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Foreword

Phase transitions of first-order are phenomena, widely occurring in nature. Among them are:
evaporation and condensation, melting and solidification, sublimation and condensation into
a solid phase, some structural transitions in the solid state, transitions connected with the
decomposition into different phases in multicomponent liquid and solid systems, etc.

The classical explanation of the questions why and when phase transitions of first-order
take place was based on thermodynamic concepts, which has been developed already more
than hundred years ago. In the first half of the 20th century, huge efforts have been undertaken
to determine not only why and when the phase transition takes place, but how it proceeds. To
answer this question not only thermodynamics but also kinetic theories had to be developed
and applied. An example was the classical theory of nucleation of the evolving phase which
goes back to the 30th of the last century and is due to Becker and Doring, Kaischew and
Stranski, Frenkel and Zeldovich and others.

First-order phase transformations in a system starting from a metastable initial state pro-
ceed via the new-phase nucleation mechanism. The kinetics of such phase transformation
can be usually divided into three stages. Let us consider a system supersaturated with certain
species inducing a diffusive mass transfer (e.g. by the atoms of a dissolved material in the
process of precipitation of other phases from a supersaturated solid or liquid solution; or by
vacancies and interstitial atoms in the growth of pores and dislocation loops, or by the atoms
of a gas in the growth of gas-filled bubbles etc.). The first stages of decomposition, when
the supersaturation, for example, with point defects is large enough, is characterized by inten-
sive generation of viable nucleation centers larger than some critical size. At this stage, the
amount of material in the nucleation centers is small, compared with that in the solution, and
the supersaturation is essentially constant.

The second transient, or intermediate, stage of the decomposition process begins when the
amount of material in the new phase becomes comparable with the initial quantity thus result-
ing in a decrease of the supersaturation. At this stage, the number of precipitates is practically
constant and the volume of the new phase increases mainly through the independent growth
of the precipitates.

Finally at the third, late stage of the phase transition, when the already formed aggregates
of the newly evolving phase become large enough to allow to essentially decrease the super-
saturation, surface tension and the conservation laws for atom species or point defects begin
to play a crucial role in the phase transformation, thus resulting in a specific mechanism of
the kinetics of new phase growth. This stage of the phase transformation was originally dis-
covered in the analysis of decomposition of metastable solutions by Ostwald in 1900. This
late stage of diffusive decomposition of dispersed systems is characterized by an increase in
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XII Foreword

the mean size of new phase macroscopic centers, as a result of diffusive mass transfer from
the smaller- to the larger-sized centers, the larger-sized centers “devouring” the smaller ones.
From a thermodynamic point of view, this behavior is due to a decrease of the free energy
of the system as a consequence of a reduction of the interfacial area and the surface energy
contributions to the thermodynamic functions. Stochastic generation of new stable nucleation
centers at this stage is highly improbable since they must be macroscopic in size. A consid-
erable “diffusive” interaction between grown-up centers of the new phase appears, since each
particular center “feels” the self-consistent diffusion field of the entire ensemble of point- and
macrospecies of the new phase.

This phenomenon is commonly denoted as “Ostwald ripening” or, more frequently, as
“coarsening”’, or sometimes as “coalescence”, though the latter term is, in fact, inadequate.
Although the late stage of the phase transition (or decomposition of the originally existing
phase), determined by the diffusive interaction between new phase centers, has been analyzed
by many authors, an incomplete set of equations has usually been solved, giving size distri-
bution functions which did not obey the law of conservation of point defects. The detailed
kinetics of a dispersed system cannot be revealed within such a reduced theoretical frame-
work. The author, together with .M. Lifshitz, had the opportunity to work out the theory
of this late stage in the 50th of the last century giving a first correct solution of these highly
non-linear problems.

The book presents the complete description of all three stages of first-order phase transi-
tions, thus allowing one to model the whole course of the first-order phase transition kinetics.
Special attention is given to transient stages in nucleation characterized by the establishment
of steady-state conditions of nucleation and the determination of the time required for its ap-
proach and period of existence of the different stages of the nucleation-growth process.

Phase transformation processes may also proceed through the process of spinodal decom-
position of an initially unstable phase. To this end the system should be quickly driven into
the totally unstable state. The last chapter of the book deals with the kinetics of the spinodal
decomposition. It is interesting that also in this case the whole process can be subdivided into
three stages, in some way analogous to the transition in metastable system. Moreover, it is
shown that both nucleation-growth and spinodal decomposition processes can be described in
a unique way in terms of a generalized cluster model accounting appropriately for both size
and composition (or density) changes of the clusters of the newly evolving phase in the course
of their evolution to the respective macrophases.

The theoretical results obtained are illustrated in the book by experimental evidences. First
of all it concerns the processes of phase decomposition in multicomponent systems, including
isotope mixtures of solid helium.

In the course of the work on different aspects of the kinetics of phase formation, I had the
pleasure to work together with a number of colleagues. To all of them I would like to express
here my sincere thanks. In particular, it is a pleasure to thank the Scientific Editor of this
book, Dr. Jiirn W. P. Schmelzer, for his advices and gracious assistance in so many ways in
the preparation of the present book for publication.

Kharkov, December 2008 Vitaly V. Slezov
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Preface

The present monograph is written by an outstanding worldwide highly recognized specialist
in the field of the theory of first-order phase transitions, Prof. Vitaly V. Slezov. Vitaly Slezov
studied physics at the Leningrad Polytechnical Institute, Russia. Since 1954, his scientific ac-
tivities were permanently connected with the Institute of Physics and Technology in Kharkov
now in the Ukraine, first as a PhD student and since 1973 as the head of a department at the
institute. He was awarded twice the State Price of the Ukraine for Research (in 1978 and
1993) and elected as a Corresponding Member of the National Academy of Sciences of the
Ukraine in 1995.

Vitaly V. Slezov started his scientific career under the guidance of Ilya M. Lifshitz. In
the course of the work on his PhD thesis, he developed in cooperation with I. M. Lifshitz the
theory of the late stage of coarsening of solid solutions (Ostwald ripening), nowadays, well-
known as Lifshitz—Slezov (LS) or Lifshitz—Slezov—Wagner (LSW) theory. The analysis of
the properties of multicomponent solid solutions and the kinetics of phase transformation pro-
cesses in them he continued then in the following decades covering the whole course of these
processes from the initial stages of nucleation via independent growth and, finally, coarsening.

Vitaly V. Slezov performed original research also in a variety of other fields of theoretical
physics like superconductivity, solid state physics, the behavior of solids under irradiation.
However, the analysis of the properties of solid solutions was always in the center of his
interests. Hereby he combined theoretical work with experimental applications. The results
of his work covering a period of five decades and related developments are summarized in the
present monograph.

Itis a special pleasure to note that, since 1988, the editor of the present book had the oppor-
tunity and pleasure to perform a variety of common analyses in close cooperation with Vitaly
V. Slezov and coworkers of his research group. Here, in particular, the kinetics of coarsening
under the influence of elastic stresses, the analysis of the first stages of first-order phase transi-
tions, and several problems of the theory of spinodal decomposition have to be mentioned. In
the analysis of nucleation—growth processes, widely the classical approach to the description
of these processes was utilized treating the aggregates of the newly evolving phase to a large
extent as small pieces of the respective macroscopic phase. However, the alternative approach
to phase formation denoted as spinodal decomposition solves another problem, it shows how
the bulk properties of the clusters evolve in time. Comparing the different methods, Vitaly V.
Slezov always posed the question whether it is possible to formulate a theory allowing one
a description of the kinetics of phase formation incorporating both cluster growth and disso-
lution and the change of the bulk properties of the clusters in dependence on time and size
of the clusters. Such a theoretical approach could be formulated by the editor of the present
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X1V Preface

monograph in cooperation with coworkers of Vitaly V. Slezov and is included in the present
monograph as well.

The results of the long-standing, highly original investigations of Vitaly V. Slezov and his
group have been presented by the author and his coworkers and discussed in almost every
of the Research workshops Nucleation Theory and Applications, which take place in Dubna
(near Moscow) at the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for
Nuclear Research and are organized by the editor of the present book each year since 1997 till
now. The present book gives, for the first time, the opportunity to the interested reader to get
a comprehensive overview in English on the investigations performed by the author and his
coworkers on the theoretical description of first-order phase transitions and applications of the
theory to experiment. I am sure that the present monograph will be of outstanding interest for
all colleagues dealing with the analysis of these intriguing phenomena.

Finally, I would like to express my sincere gratitude to Drs. Alexander S. Abyzov and
Leonid N. Davydov for their assistance and the huge work they performed in the preparation
of the manuscript for publication.

Rostock (Germany), Dubna (Russia), Kharkov (Ukraine)
December 2008 Jiirn W. P. Schmelzer
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1 Introduction

The present book is devoted to the theoretical description of the kinetics of first-order phase
transitions covering the whole course of the processes of nucleation and cluster growth. The
outline of the theory is supplemented by a variety of applications.

The book is organized as follows: In Chapter 2, the basic equations are summarized al-
lowing the description of both nucleation and growth. In particular, a new method of de-
termination of the emission coefficients of single particles from clusters of arbitrary sizes —
being an essential ingredient of the kinetic equations describing nucleation and growth pro-
cesses —is developed. This method does not require the application of so-called equilibrium or
constraint equilibrium distributions and the principle of detailed balancing to nonequilibrium
states. It is applicable generally to any kind of phase transformation processes (condensation
of gases, segregation processes in solid and liquid solutions, bubble formation in liquids, pore
formation in solids, crystallization in melts, etc.) both for one-component and multicompo-
nent systems. As it turns out from the analysis, the final equations obtained are widely similar
to those employed traditionally in classical nucleation theory, where these relations are uti-
lized without a sufficient theoretical foundation. This way, the approach outlined here gives
a theoretical foundation of some basic assumption of the classical approach in the descrip-
tion of nucleation—growth processes. Based on the method outlined, the kinetic equations
describing nucleation—growth processes are formulated and some further consequences are
discussed. It is shown, in particular, that, under quite general conditions, the set of kinetic
equations describing nucleation—growth processes in multicomponent systems can be reduced
to relations for the description of these processes in one-component systems. However, the
thermodynamic and kinetic parameters in the resulting set of kinetic equations depend on the
kinetic and thermodynamic parameters of all of the components involved in the process. The
respective expressions are derived and outlined in the contribution as well.

Based on analytical solutions of the Frenkel-Zeldovich equation, in Chapter 3 a descrip-
tion of the whole course and of basic characteristics of the first stages of nucleation—growth
processes in first-order phase transitions — the stage of establishment of steady-state condi-
tions in certain ranges of cluster sizes, the stage of steady-state nucleation and simultaneous
growth, the stage of dominating independent growth of the supercritical clusters — is devel-
oped. Analytical expressions are derived for the time evolution of the cluster-size distribution
function and the flux in cluster-size space both for kinetic- (ballistic) and diffusion-limited
growth modes. In addition, detailed analytical expressions are given for the duration of the
different stages and further basic characteristics of this process.

In particular, estimates for the number of clusters, N, formed in nucleation-growth pro-
cesses in first-order phase transformations, and their average size, (R), at the end of the stage
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2 1 Introduction

of independent growth of the supercritical clusters are derived. The results are extended to
the description of nucleation and growth in multicomponent systems when aggregates with a
given stoichiometric composition are formed first for the simplest case of ideal solutions. The
generalization to nonideal solutions is discussed in Chapter 8. As shown, particular thermo-
dynamic properties of the system under consideration have to be taken into account only in
evaluating the final expressions of the theory in application to particular experimental condi-
tions. This way, the possibility is opened for a straightforward application of the theory to the
interpretation of experimental results.

As an additional application, the theory gives the possibility of testing alternative ap-
proaches in the determination of the work of critical cluster formation based on measurements
of the number of clusters formed in nucleation—growth processes and their average sizes at the
end of the stage of independent growth. Moreover, the number of clusters and their average
sizes determined in this way supply us at the same time with the initial conditions for the pro-
cess of coarsening, outlined in detail in Chapter 4. Here the basic results of the Lifshitz—Slezov
theory are outlined in a comprehensive way.

Possible shapes of cluster-size distributions evolving in the course of nucleation—growth
processes are analyzed in Chapter 5 giving simultaneously numerical illustrations of the an-
alytical results obtained in Chapters 3 and 4. In the analysis (i) a critical discussion of the
applicability of statistical cluster models for an interpretation of experimental results is given;
(ii) criteria for the evolution of thermodynamically stabilized monodisperse distributions are
formulated; (iii) kinetic equations for the description of the nucleation—growth process are
developed avoiding the application of the so—called equilibrium distribution of classical nu-
cleation theory and the principle of detailed balancing (cf. Chapter 2); (iv) numerical solutions
of the kinetic equations describing the nucleation—growth process under different conditions
are presented. Possible extensions and further applications are discussed.

Chapter 6 is devoted to the theoretical description of coarsening under the influence of
elastic stresses. In the present analysis, stresses are considered which are due to cluster—
matrix interactions. The theory of Schmelzer and Gutzow is briefly summarized allowing one
to obtain expressions for the time dependences of the average cluster size and the number of
clusters in coarsening under the influence of such types of stresses. This review is followed
first by the outline of the theoretical description of the coarsening process of an ensemble of
clusters in a system of nondeformable pores of equal size. The evolution of the cluster-size
distribution and related quantities like average cluster size, critical cluster size and the number
of clusters is analyzed in detail. It is shown that via an intermediate bimodal distribution,
a stable monodisperse distribution of clusters is established. Possible fields of application
of the outlined theory are segregation processes in porous materials like vycor glasses and
zeolites, spatially inhomogeneous materials or highly viscous melts or polymers. The theory
is extended then to the case of so-called weak pores and coarsening in pores with some given
pore-size distribution.

In Chapter 7, the kinetics of phase transformation processes in solid or liquid solutions is
investigated for two cases when coarsening is affected by different factors from outside of the
system. As a first such phenomenon we consider the case that monomeric building units are
added homogeneously to the system with a constant rate ®,. The analysis is carried out both
for diffusion and kinetically limited growth modes. Characteristic quantities like the average
({R)) and the critical cluster sizes (R.) are discussed as well as the time evolution of the
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1 Introduction 3

cluster-size distribution function. It is shown that for diffusion-limited growth the number of
clusters, N, evolving in the system is a linear function of the rate of addition of monomers,
while the average cluster radius grows, in the asymptotic stages, as (R) t'/3. For kinetic-
limited growth we find (R) o t°/12 and N oc t~1/4. Latter results imply that in the asymptotic
stage of kinetically limited growth the quantity (R)>/® N approaches a constant value. The
results can be used to generate cluster-size distributions with definite properties by varying
the rate of input fluxes of monomeric building units of the segregating phase. An analytic
description of such processes is performed for the case of void ripening in the presence of
bulk vacancy sources. The evolution of the void ensemble is considered for the case that
vacancy sources are homogeneously distributed in the system. The asymptotic properties of
the size distribution function of voids are investigated in the case of damped, constant, and
increasing regimes. The applicability limits of the obtained formulas are determined.

As a second phenomenon, cluster growth and coarsening under the influence of radiation
is analyzed in detail. The growth of second phase precipitates from the supersaturated solid
solution under irradiation is investigated taking into account a new mechanism of precipitate
dissolution. This mechanism is of a purely diffusion origin, i.e., it is based on diffusion out-
fluxes of point defects produced by irradiation within the precipitates into the host matrix,
provided that the interface boundary is transparent for the point defects. The point defect pro-
duction rate within a precipitate is proportional to its volume while the total diffusion influx of
substitutional impurity atoms is proportional to its radius meaning that there exists a maximum
size at which the precipitate growth rate equals the rate of its radiation-induced dissolution.
This size is shown to be a stable one implying that under irradiation a stationary state can be
achieved far away from the thermodynamic equilibrium.

In Chapter 8, the kinetics of phase transformation processes in multicomponent real so-
lutions is analyzed in detail extending the analysis given in Chapter 3. A kinetic theory of
nucleation and growth of a newly evolving phase with a given stoichiometric composition
in a multicomponent solid solution is developed. It is assumed naturally that the new phase
grows as a result of individual atom incorporation into the new phase domain in a stoichio-
metric ratio. As is shown, for the case of phase formation in a multicomponent system the
basic kinetic equations, describing the nucleation—growth process, can be reduced formally to
the respective expression derived for nucleation—growth processes in one-component systems.
However, the effective diffusion coefficients and the effective supersaturation are expressed as
nontrivial combinations of the thermodynamic and kinetic parameters of the different compo-
nents involved in the phase formation process. In the determination of these properties, the
theory is not restricted in its applicability to perfect solutions but extended to phase formation
in real mixtures. Thus, the theory may be applied directly toward the interpretation of experi-
mental data. In particular, the influence of solute—solute interactions on segregation processes
in multi-component solid solutions leading to the formation of a new phase with a given sto-
ichiometric composition is investigated. Expressions for the nucleation and growth rates are
derived. Estimates are developed for the time required to establish a steady-state nucleation
rate in the system and the time interval for which such a steady state can be sustained. Based
on these results a method for an experimental determination of the parameters describing the
interaction of the solute components is anticipated. Moreover, the kinetic equation describing
the evolution of the cluster-size distribution function is generalized to account for stochastic
effects both due to fluctuations in the growth rate and due to possible spatial correlations of
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4 1 Introduction

the evolving clusters in the matrix. The possible influence of such stochastic effects (thermal
noise and random coalescence) on coarsening described by such additional terms is discussed
briefly.

In Chapter 9, the theory is applied to the case of formation of bubbles and their further
growth. In particular, bubble nucleation and growth in low-viscosity liquids supersaturated
with gas is theoretically studied. It is shown that, in a certain parameter range, the bubble
size is adjusted to the amount of gas in a bubble, and the state of the bubble can be described
using one variable: the bubble size or the number of gas atoms in a bubble. Expressions for
the nucleation time, bubble-size distribution function, flux of nuclei in bubble-size space, and
the maximum number of bubbles formed in the system are determined. After the nucleation
period an intermediate stage of the process starts when the number of bubbles per unit vol-
ume remains virtually constant, whereas the amount of the gas dissolved per unit volume of
the solution significantly decreases, almost attaining the equilibrium value. At the late stage
(coalescence), small subcritical bubbles disappear due to gas transfer to large supercritical
bubbles; as a result, the number of bubbles in the liquid decreases. For all these stages, the
kinetics of evolution of the bubble-size distribution function and the amount of gas per unit
volume of the solution is determined.

In Chapter 10, the theory is applied to phase formation processes in helium at temperatures
near to the absolute zero. It has been emphasized frequently in the literature that helium and
its isotopic mixtures hold much promise as model systems for studying phase transitions. One
of the problems generally occurring in the experimental analysis of nucleation phenomena
consists in the necessity to generate the conditions for homogeneous nucleation. This task
is usually realized by establishing high supersaturations in the system so that homogeneous
nucleation dominates. However, in dilute liquid 3He—*He mixtures it is impossible to attain
a large supersaturation during cooling because of the limited solubility of He at T' — 0.
In the case of solid helium, these problems might be solved, however, provided that high-
quality impurity-free samples are available. The solid helium isotope system is also attractive
because the separation process occurs on an accessible time scale: slower than that in fluids,
but faster than that in conventional solids. This is a consequence of the unique nature of the
atomic motion in solid helium where quantum exchange results in a temperature-independent
diffusion coefficient, intermediate between that of a solid and a liquid. Chapter 10 presents
NMR measurements in a solid *He—*He mixture as the temperature was lowered in steps in the
course of phase segregation, as well as precision measurements of the pressure during phase
separation in solid mixtures of *He in He allowing one to obtain characteristic times of the
phase decomposition process. The described results evidence that homogeneous nucleation is
realized in He—*He solid solutions at significant supercoolings and heterogeneous nucleation
at the smallest supercoolings. From a comparison with theory, the surface tension at the
interface of the phase-separated clusters is determined.

In Chapter 11, first spinodal decomposition processes in adiabatically closed systems are
analyzed. The adiabatic closure of the system results in changes of the temperature and a
nonlinear feedback of the phase formation process on the state of the ambient phase. As
shown, such effect leads to a similar scenario of the decomposition process as compared
with nucleation—growth and coarsening processes. As a next step, basic features of spin-
odal decomposition, on one side, and nucleation, on the other side, and the transition between
both mechanisms are analyzed within the framework of a generalized thermodynamic clus-
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1 Introduction 5

ter model based on the generalized Gibbs approach. Hereby the clusters, representing the
density or composition variations in the system, may change with time both in size and in
their intensive state parameters (density and composition, for example). In the first part of
the analysis, we consider phase separation processes in dependence on the initial state of the
system for the case when changes of the state parameters of the ambient system due to the
evolution of the clusters can be neglected as this is the case for cluster formation in an infinite
system. As a next step, the effect of changes of the state parameters on cluster evolution is
analyzed. Such depletion effects are of importance both for the analysis of phase formation in
confined systems and for the understanding of the evolution of ensembles of clusters in large
(in the limit infinite) systems. The results of the thermodynamic analysis are employed in both
cases to exhibit the effect of thermodynamic constraints on the dynamics of phase separation
processes.
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2 Basic Equations: Determination of the Coefficients
of Emission in Nucleation Theory

2.1 Introduction

Phase transformations play an important role in a variety of processes ranging from nu-
cleation and growth in the atmosphere [98, 135, 193], nucleation and growth in expand-
ing gases [242, 316], bubble formation in liquids [160, 271], and phase formation in solids
[51, 110, 124, 128] to phase transitions in nuclear matter [57, 240, 247] and the early uni-
verse [112]. Despite a number of modern developments [28, 33, 93, 145, 358], the the-
oretical interpretation of experimental results on phase transformations is carried out till
now widely based on classical nucleation theory, its modifications and extensions (see, e.g.,
Refs. [71,94,271,337]). According to the classical picture, the phase transformation proceeds
via the formation of clusters representing precursors of the newly evolving phase. Hereby it
is assumed in an approximation which in most cases is sufficiently accurate that the growth or
dissolution of the clusters proceeds via incorporation or emission of single atoms or molecules.

In order to develop a kinetic description of nucleation—growth processes in the framework
of the classical approach, one has to know, consequently, the coefficients of aggregation and
emission of single particles for clusters of arbitrary sizes. Moreover, one has to construct
the so-called work of formation of clusters of arbitrary sizes, i.e., one has to determine the
change of the characteristic thermodynamic potential if a cluster is formed in the system. An
example for the dependence of the work of cluster formation on cluster size, as it is commonly
assumed in classical nucleation theory, is shown in Figure 2.1 for a binary stoichiometric
system. However, although the classical theory was formulated in its basic premises already
in the 1930s, till now a number of problems both of fundamental character and with respect to
possible applications are not solved finally.

In particular, one of the most debated points in nucleation theory is the method of deter-
mination of the emission coefficients. These coefficients are commonly specified by deriv-
ing so-called equilibrium or constraint equilibrium distributions with respect to cluster sizes
and applying the principle of detailed balancing to thermodynamic nonequilibrium states (cf.
Refs. [352,353] and references cited therein). Such an approach is, however, highly question-
able [240,247,252]. In application to thermodynamic nonequilibrium states such distributions
are artificial constructs; they are not realized in nature. Moreover, the principle of detailed
balancing holds for equilibrium but not for nonequilibrium states. For this reason, different
attempts have been developed to overcome such difficulties. The most straightforward solu-
tion of the problem of determination of the emission coefficients would consist, of course, in
the application of microscopic statistical-mechanical approaches (cf., e.g., Refs. [215,216]).
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8 2 Determination of the Coefficients of Emission in Nucleation Theory
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Figure 2.1: Work of formation (or the change of the Gibbs free energy, AG) in dependence on cluster
size (R is the radius of the cluster) as it is assumed commonly in classical nucleation theory. Nucleation
is the process of formation of supercritical clusters with sizes R > R. capable to a further determin-
istic growth. In the calculations it is assumed in accordance with the classical approach that bulk and
surface properties of the clusters are widely the same as the respective properties in the newly evolving
macroscopic phase. The work of cluster formation can then be expressed via Eq. (2.16).

Due to the enormous problems in applying this method to real systems it is however, till now
more an interesting possibility rather than a practical tool (cf. also Ref. [352]).

Macroscopic approaches, like the traditional method discussed above, have the advantage
that specific properties of the system under consideration enter the description only via the
specific expressions for the characteristic thermodynamic functions. These or other thermo-
dynamic characteristics applied can be determined much easily. For the mentioned reasons,
it is of use to further develop macroscopic methods for the determination of the emission
coefficients retaining their advantages but avoiding highly questionable arguments. One of
such approaches was developed by Katz et al. (cf., e.g., Refs. [117-121]) in application to
both vapor condensation and nucleation and growth in condensed media. In this approach,
the coefficients of emission of single particles are determined first for the state of a saturated
system. In a next step, by applying appropriate expressions for the cluster-size distributions
evolving in saturated systems and certain additional assumptions (e.g., independence of the
emission coefficients on the state of the ambient phase [117-119]), the emission coefficients
for the supersaturated systems are determined. In another development, which goes back to
Becker and Doéring [24], the emission rates are determined by applying the Gibbs—Thomson
(or Kelvin’s) equation (cf. Refs. [120, 121,352]).
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2.2 Basic Kinetic Equations 9

The problem described was discussed some years ago in detail by Wu [355]. He came
to similar conclusions and mentioned: “The constrained equilibrium hypothesis (CEH) for-
mulated as an extrapolation of fluctuation thermodynamics is ...not valid. A different justi-
fication is required ... Since CEH is central to nucleation theory, it is not likely to go away
until something better comes along ....” It is one of the aims of the present chapter to show
that these mentioned approaches may be generalized arriving, indeed, at some justification of
the methods commonly employed. We show that a mesoscopic statistical-mechanical method
for the determination of the coefficients of emission can be developed without relying on
such questionable concepts like constraint equilibrium distributions and the application of the
principle of detailed balancing to nonequilibrium states. This method does not involve the
assumption that the emission rates are independent of the state of the ambient phase. It is
applicable quite generally to a variety of phase transformation processes in gases as well as in
condensed matter both for one-component and multicomponent systems. It allows a straight-
forward generalization to nonisothermal phase formation processes as well.

The chapter is organized as follows. After a brief introduction of the basic kinetic equa-
tions (Section 2.2), the newly developed method for the determination of the emission coef-
ficients is outlined. It is shown that the method is applicable both to one-component (Sec-
tion 2.3) and multicomponent (Section 2.4) systems. As an example, the derivation of the
respective dependences is given in detail for the case when the external pressure p and tem-
perature 1" are kept constant. It is shown further that the method can be applied with mi-
nor modifications also if the phase formation proceeds at any external conditions other than
isothermal or isobaric (Section 2.5). The resulting relations for the determination of the emis-
sion coefficients are independent of the boundary conditions applied. Employing these results,
the basic sets of kinetic equations describing nucleation—growth processes both in one- and
multicomponent systems are completed, the initial conditions for their solution are specified
(Section 2.6) and some further consequences are discussed (Section 2.7). For the first time,
this approach has been outlined in [293,304] and elaborated in more detail in [306,315]. Be-
low in this chapter we present a comprehensive outline of the basic ideas as well as results of
the approach developed and an analysis of some further developments.

2.2 Basic Kinetic Equations

We discuss here first processes of formation of a new phase in an ambient phase with high ther-
mal conductivity. In this case, heat sources, connected with transitions of the basic elementary
units of the system (atoms, molecules, aggregates of a given stoichiometric composition, etc.)
from one phase to another, practically do not change the temperature 7' of the part of the
system, where the aggregate of the new phase evolves. Therefore, with a sufficiently high
precision, the nucleation—growth process may be considered as isothermal. Moreover, in ad-
dition, constancy of the pressure p is supposed. To be definite, the discussion is carried out
in application to condensation processes in gases (in an inert carrier gas). However, the basic
assumptions are applicable quite generally. Thus, the results are equally valid for a variety of
different phase formation processes as discussed above, e.g., for segregation in solid or liquid
solutions, crystallization of melts or bubble formation in liquids.
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10 2 Determination of the Coefficients of Emission in Nucleation Theory

As generally assumed in nucleation theory, the condensation or evaporation of the clusters
(or droplets) occurs by aggregation or emission of single particles, only. Therefore, the kinetic
equation will be of the standard form [144,293,298,304,306], i.e.,
of (n,t) _ ()

S = = L) = el () @1

D f (L) =l f (nat).

Here f(n,t) is the distribution function of clusters of the new phase, containing n single
particles; w'f],t)l,n and wfltz .1 are the average number of events that per unit time one particle
is absorbed and the number of particles in a cluster is increased from (n — 1) to n and n to
(n + 1), respectively; wf;,Z_l and w,(;)lm are the average number of events for a cluster to
release one particle per unit time and to be transferred to the states with (n— 1) and n particles,
respectively.

By introducing the fluxes J,,, we may rewrite Eq. (2.1) in the form of an ordinary conti-

nuity equation in cluster-size space as

of

-+ = Jp1— T, 2.2

5 1 (2.2)
where the fluxes J,, are determined by

Juor=wiP f (n—1,8) —wl)  f (n,t), 2.3)

To=wit o f () —wi L f (n 4 1,1). 2.4)

Once we have derived the kinetic equations in the general form, we have, now, to determine
the kinetic coefficients.

2.3 Ratio of the Coefficients of Absorption and Emission of
Particles

The condensation or absorption coefficients wf:)l’n and wif,z 1 are determined by the kinetic
mechanism by which the droplets (or, in general, clusters of the new phase) grow. As will
be shown later, they can be determined directly from the macroscopic growth rates. Knowing
how to obtain the absorption coefficients it is also necessary to possess the methods for the
determination of the emission coefficients, w(~). For such purposes, let us note that the parti-
cles of the new phase may be divided into two groups: First, for the particles with a number of
atoms less than the critical cluster size, n < n., the ambient phase is undersaturated. Here n,
is the critical cluster size in nucleation. In a macroscopic deterministic description, such clus-
ters shrink and disappear. In other words, the concentration of single particles in the ambient
phase, capable to be incorporated into the clusters of the newly evolving phase, is too small to
retain a dynamic equilibrium (cf. Figure 2.1).

Second, for droplets with supercritical sizes, n > n., the ambient phase is supersaturated
and the clusters of the new phase grow in a deterministic description. It means that the con-
centration of single particles has such values that the average number of aggregation processes

www.iran—m L\V‘dLLC() m

Age Crwdivs 9 Olgils @ yo



2.3 Ratio of the Coefficients of Absorption and Emission of Particles 11

per unit time interval exceeds the respective value for emission from a given cluster of the new
phase. Particles with critical sizes, n = n.., are in (unstable) thermodynamic equilibrium with
the ambient phase of given composition (here the vapor phase). Hence, for critical clusters the
average numbers of aggregation and emission processes coincide.

The methods for the determination of the coefficients w ) differ in our approach in de-
pendence on the range of cluster sizes considered, i.e., which class of clusters is considered,
super- or subcritical ones. However, before we explain our method, the traditional approach
is briefly revisited and discussed. Hereby, in addition, some general thermodynamic relation-
ships are derived employed in the subsequent analysis.

2.3.1 Traditional Approach

In thermodynamic equilibrium states, a time-independent statistical cluster-size distribution is
established in the course of time. This distribution is described by Eq. (2.1) with (0f/dt) = 0.
This way, in order to find the equilibrium cluster-size distributions we have to find the time-
independent solutions of the set of equations (2.1).

In the search for this solution, we may follow a different path as well. The equilibrium
distribution of clusters, f(°®(n), may be determined by general methods of statistical physics
as [144]

RreV
f(cq) (n) = Aexp <_?1(“n)> . (2.5)

Here kp is the Boltzmann constant and 7' the absolute temperature. Rye,(n) is the work of
formation of a cluster consisting of n particles performed in a reversible process [144]. For
processes proceeding at constant values of pressure and temperature (as it is assumed here),
it equals the change of the Gibbs free energy, AG [144]. This quantity can be expressed,
generally, as

AG (n) = Ga(n) = np(p, T). (2.6)

Here G 4(n) is the contribution of the cluster (drop) of size n to the value of the thermodynamic
potential of the whole system, p,(p,T') is the chemical potential per particle in the ambient
bulk (vapor) phase and n is the number of atoms in the cluster. In other words, AG (n) is the
difference of the thermodynamic potentials of the system consisting of a cluster and the vapor
compared with the homogenous initial vapor state.

In Eq. (2.6), the particular expression for G4(n) is not specified, so this relation can be
quite universally applied. If, for example, the capillarity approximation and certain additional
assumptions are employed [94,248] for the determination of AG(n), Eq. (2.6) takes the form

2/3
AG () = na(p, T) — 1o(p, T) + 470 (de) n?/3, @)

Here pq(p,T) is the chemical potential of one single particle in the bulk liquid phase at a
pressure p and a temperature 7', wy is the volume per atom in the newly evolving phase, o is
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12 2 Determination of the Coefficients of Emission in Nucleation Theory

the surface tension at the (planar) interface between the ambient phase (vapor) and the newly
evolving phase. For the particular case as expressed by Eq. (2.7) we have, consequently,

2/3
Gq(n) =nug(p,T) + 4ro <47de> n?/3, (2.8)

Note, however, that the further derivation is independent of any particular choice of the ex-
pression for G4(n).

Using the time-independent form of the kinetic equations (Eq. (2.1)) we get (by applying
the principle of detailed balancing J,, = 0, n > 1)

wfz,tfﬂ ~feD (n41) (2.9
wi, ) 9)

or, finally, after substituting the expression for the work of cluster formation, as given by
Eq. (2.6), into the distribution function f (eq) (n) (Eq. (2.5)) describing heterophase fluctua-
tions,

2.1
T (2.10)

Jr
Wit _ o (_ [AG(n+1) - Aa(m]) |
It is evident that the knowledge of the specific form of the preexponential coefficient A in
Eq. (2.5) is, in general, not required. It has to be supposed only that its dependence on the size
and the composition of the cluster is weak as compared with the exponential term in Eq. (2.5).
With the general relation (2.6) we may further write

B 0G4(n)
on

—[AG(n+1) = AG(n)] = puo(p, T) = ptv — pa(n +1). (2.11)

n=n+1

Here piq(n) is the chemical potential per atom of the drop of size n including surface energy
and other possible size effects. It is defined by

oG
pa(n) = #- (2.12)

For the special choice of G4(n), as expressed by Eq. (2.8), we have, in particular,

0G 4(n 8mo [ 3 2/3 _
pa(n) = ;TE ) - pa(p, T) + —= (Ewd> n/3 (2.13)
Generally, with Eq. (2.11) we may also write
(+)
wn n v 1
(,7)+1 = exp (%) ) (2.14)

wn+l,n

In this way, it has been shown that in the thermodynamic equilibrium state the relation between
the coefficients of emission and absorption is given by either Eq. (2.9), (2.10), or (2.14).
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2.3 Ratio of the Coefficients of Absorption and Emission of Particles 13

In application to the thermodynamic equilibrium state, the function £(°®)(n) has a real
physical meaning. It represents the equilibrium distribution of heterophase fluctuations. More-
over, in equilibrium the principle of detailed balancing holds. Therefore, for the considered so
far states the method of derivation of the emission coefficients is fully satisfactory. However,
even in this region of applicability some uncertainty remains connected with the properties of
the preexponential factor A in Eq. (2.5).

However, considering thermodynamically unstable, nonequilibrium states, where nuclea-
tion-growth processes may occur, the situation becomes quite different. Distributions of the
type as given by Eq. (2.5) can be derived in a correct way only for equilibrium but not for
nonequilibrium states. This remark refers both to classical thermodynamic and statistical-
thermodynamic approaches. Frenkel [71] derived his well-known distribution based on the
assumption of a minimum of the Gibbs free energy (cf. also the more detailed discussion
given here below and in Chapter 5). However, latter condition is applicable to equilibrium
states, only. Fisher [69] obtained similar slightly modified expressions by applying methods
of equilibrium statistical physics. Thus, the extrapolation of these results to thermodynamic
nonequilibrium states is, again, not correct. Generally, the application of methods of equi-
librium statistical mechanics for a description of fluctuation processes [144] is valid in the
thermodynamic equilibrium state, only.

For the determination of the emission rates of single particles from the clusters and the
steady-state nucleation rate, in general, a somewhat artificial model introduced originally by
L. Szilard (see Figure 2.2) is commonly utilized. It is assumed that, once a cluster reaches
an upper limiting size, g >> n., it is instantaneously removed from the system. Moreover,
according to Szilard’s model, simultaneously to the removal of a g-sized cluster, g single
particles are added to the system. In this way, the total number of particles is kept constant.
Starting with a state consisting of single particles only, after some time interval (denoted
commonly as time lag in nucleation) a time-independent steady-state cluster-size distribution
is established in the system.

Assuming that (i) clusters of different sizes can be considered as different components
in a multicomponent perfect solution (or a mixture of perfect gases for vapor condensation),
(i1) the number of particles aggregated in the clusters is small as compared with the total
number of solute particles, (iii) conservation of the total number of solute particles is fulfilled,
(iv) the change of the cluster size is possible by emission or aggregation of monomers, only,
Frenkel [71] obtained an expression for the stationary cluster-size distribution function f(¢) (n)
as

f(e)(n)Zf(l)exp{—M}, (2.15)
kgT
widely similar to Eq. (2.5). Indeed, for the thermodynamic boundary conditions chosen, the
work of cluster formation is given by AG(n). The factor f(1) is the concentration (number
per unit volume) of single particles which will be also denoted as c.

The distribution (2.15) is commonly denoted as equilibrium or constraint equilibrium dis-
tribution with respect to cluster sizes [98,135,352,353,355]. Note, however, that this notation
is misleading. The time-independent state of the model system is in reality a nonequilibrium
steady state. Therefore, the procedure applied in the derivation of Eq. (2.15) lacks any ther-
modynamic foundation. Moreover, one has to take into account that the distribution refers
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Figure 2.2: Schematic representation of Szilard’s model used in classical nucleation theory. Clusters
(or droplets) with numbers of monomers g > n. are instantaneously removed from the chamber via a
membrane (2) impermeable for clusters of smaller sizes. Simultaneously to the removal of such a cluster,
g monomers are added to the chamber (1). In such a way, a constant supersaturation is sustained in the
system and a steady state with a constant nucleation rate may be established in the course of time.

to Szilard’s artificial model system which is not realized in nature (except for artificial con-
ditions or by assuming some kind of “Szilard’s demon” in analogy with Maxwell’s demon
(cf.,, e.g., [117-121])). Therefore, the often found identification of the so-called equilibrium
distribution with respect to cluster sizes with real distributions evolving in nucleation—growth
processes in thermodynamically unstable systems is, in general, incorrect. Even in interpret-
ing such expressions in terms of Szilard’s model (cf., e.g., Refs. [240, 247]), the resulting
distributions refer not to equilibrium but to stationary nonequilibrium steady states. For such
states, the principle of detailed balancing does not hold, in general, as well.
For thermodynamically unstable initial states, AG may be written, employing certain ap-
proximations, as (e.g., [94], cf. also Eq. (2.7) and Chapter 5)
AG n\*/? n
AG 3(%) 2<nc) . (2.16)

The so-called equilibrium distribution function £(¢)(n) (cf. Eq. (2.15)) gets in this case the
form
e /3
F19(n) AGe (, () n
= — 3(— -2 — . 2.17
() =oo{ -T2 (5 e @1

www.iran—m L\V‘JLLC() m
Age Crwdivs 9 Olgils @ yo




2.3 Ratio of the Coefficients of Absorption and Emission of Particles 15

1.0

0.8

e
=
T

SO/

0.2F

O 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3

n/ng

Figure 2.3: Equilibrium cluster-size distribution f()(n)/f(1) of classical nucleation theory in rel-
ative coordinates (n/n.) for thermodynamically unstable initial states (according to Eq. (2.17)).
(AG()/kBT) was chosen equal to 1 for convenience. Fisher’s statistical droplet model [69] leads
to a widely equivalent dependence except in the immediate vicinity of the critical point.

It is qualitatively presented in Figure 2.3. The function has a minimum for n = n. and
diverges for large values of (n/n.).

The same conclusions can be drawn with respect to any other similar expressions result-
ing from different approaches in the determination of the work of cluster formation, AG
(cf. [98, 135] and Chapter 5). Such distributions may be of use in order to determine the
emission coefficients from the expressions for the coefficients of aggregation by applying the
principle of detailed balancing to an artificial model state (with all the problems involved in
such a procedure (cf. [31,61,69,74,125,144,199,248,293,298,302,304,306,319])). However,
the application of these expressions to the description of real cluster-size distributions formed
in nucleation—growth processes is, in general, incorrect. To some extent, the results can be
considered, however, as a reasonable approximation also for thermodynamic nonequilibrium
states, but here only for clusters of subcritical sizes n < n.. Since the system is undersaturated
for these aggregates, they are in similar conditions as heterophase fluctuations in thermody-
namic equilibrium states. This statement means that the relations between the coefficients of
absorption wfj,?_l and emission wﬁfg 1 for these aggregates may be the same as in the case
of heterophase fluctuations in equilibrium states.

This idea gets additional support by a comparison between the distribution given with
Eq. (2.5) and the steady-state cluster-size distribution (cf., e.g., [94,307,309]). The latter dis-
tribution is the asymptotic solution of the set of kinetic equations provided the concentration
of single particles is kept constant by some appropriate mechanism (cf., e.g., Ref. [298]). In
the range of cluster sizes n < n., both distributions coincide with an accuracy to a factor in
the range (0.5-1). However, the degree of accuracy of such an extrapolation remains unclear.
The situation is getting even more complex for new phase aggregates with n > n., because
in this case we have a fully developed nonequilibrium situation. A reference to heterophase
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16 2 Determination of the Coefficients of Emission in Nucleation Theory

fluctuations is impossible for such clusters and another approach has to be employed for the
determination of the emission coefficients w(~).

2.3.2 A New Method of Determination of the Coefficients of Emission
2.3.2.1 General Remarks: Real and Virtual States of the Ambient Phase

After the discussion of the limitations of the traditionally employed approach, we go over,
now, to the description of a new general method of determination of the emission coefficients.
This method (i) avoids the application of the so-called equilibrium distributions of classical
nucleation theory to nonequilibrium states (i.e., to the states of interest in nucleation—growth
processes), and (ii) does not employ the principle of detailed balancing, which is valid for
thermodynamic equilibrium but not for nonequilibrium states. As mentioned already in the
introduction, it is our aim to develop a macroscopic method of determination of the emission
coefficients retaining its advantages but avoiding the application of not well founded or even
incorrect (for the considered nonequilibrium states) concepts.

One of the basic assumptions, central to our method, is the following. We assume that the
clusters of the newly evolving and the ambient phases are both in states of internal thermo-
dynamic equilibrium. Such assumption resembles the concept of a local equilibrium widely
employed in the thermodynamics of irreversible processes [96]. It is the basis for an ap-
propriate description of the thermodynamics of heterogeneous systems [85], in general, and
thermodynamic (macroscopically based) analyses of cluster formation processes [220, 230],
in particular. Moreover, it also gives the foundation to speak about well defined values of the
kinetic coefficients. This way, this first assumption is not a serious restriction but the precon-
dition of any mesoscopic approach to the analysis of cluster formation and growth processes.
It makes the problem well defined. Remember, however, that the system as a whole is in a
nonequilibrium state. The clusters are, in general, not in equilibrium with the surrounding
ambient phase.

As a second ingredient in the analysis, we employ the concept of virfual and real states
of the ambient phase. A virtual state is an idealized model state. It is constructed in the
following way. Suppose we have a cluster of given size. Then the question is what should
be the state of the ambient phase in order to attain a thermodynamic equilibrium between
the cluster considered and the ambient phase. Such virfual or possible states of the ambient
phase will differ, in general, from the real state of the system. Moreover, for clusters of
different sizes, the possible virfual states of the ambient phase are different. The coefficients
of emission will be determined in our approach by considering the differences between real
and virtual states of the system. Hereby it plays no role, as in many other applications of
thermodynamics, whether the different virfual states may be realized in practice or not. One
has to take care only that the models employed do not contradict in their consequences the
basic laws of thermodynamics, in particular, or physics, in general. This property is fulfilled
by our model.

This concept is a generalization of the application of Kelvin’s equation in the determi-
nation of the coefficients of emission for vapor condensation [94]. In this method, the same
question is asked, i.e., what should be the (virtual) state of the gas phase that a drop of given
size is in equilibrium with the vapor. From such considerations, then, conclusions are derived
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2.3 Ratio of the Coefficients of Absorption and Emission of Particles 17

concerning the values of the coefficients of evaporation for drops of given size (aggregation
and emission rates have to coincide for the virtual state of the vapor). While from the basic
idea our approach resembles the mentioned one, it is much more general and applicable to
condensation in nonideal one- and multicomponent gas systems as well as to phase formation
processes in condensed media both for isothermal and nonisothermal conditions.

2.3.2.2 Clusters of Supercritical Sizes

Going over, now, to a more detailed outline of our method of determination of the emission
coefficients, we start with the region of supercritical cluster sizes. In order to proceed with
our task we consider, as mentioned, in addition to the real also a virtual state of the ambient
(vapor) phase. This virtual state of the ambient phase is defined in such a way that the chemical
potential of the condensing particles is equal to the chemical potential of the building units in
the considered aggregate of the new phase. The virfual state of the ambient phase depends thus
on the size of the cluster (droplet) considered. For clusters of different sizes, different virtual
states of the ambient phase have to be introduced. Since we are considering, in application to
vapor condensation, droplets with sizes n > n., the chemical potential per particle y in the
real vapor is larger than that in the assumed virtual states (¢ > ). Here and subsequently,
the parameters of the virtual state are specified by a tilde. Therefore, in order to attain a
dynamic equilibrium, a certain part of the gas particles has to be fixed in its spatial positions.
Consequently, the real and virtual vapor (or, generally, the real and virtual states of the ambient
phase) differ by the number of single particles fixed in them.

For the determination of the ratio between the coefficients of aggregation and emission
and the specification of the virtual state of the ambient phase, we consider a reference system
connected with the chosen cluster. The immobile particles are fixed in their spatial positions
with respect to the chosen cluster (drop). Such a choice of the reference system allows us
to apply the method also to systems like droplets in gases, where the motion of the clusters
affects the aggregation rates. It is required only in the subsequent considerations that the state
of the ambient phase in the vicinity of the chosen cluster is at any time in a local thermody-
namic equilibrium. This condition implies that the characteristic time scales of changes of the
state of the system (including the motion of the cluster) have to be large as compared with
the respective times of aggregation or emission of single particles. The assumption of a local
equilibrium is inherent in most methods of determination of the coefficients of aggregation.
Therefore, we stay here inside the range of commonly accepted quite reasonable approxima-
tions. For large drops and most applications of nucleation theory in condensed matter physics,
the clusters practically do not move. In these cases, the reference system coincides with the
usual laboratory system.

If we describe the vapor as a perfect gas, then the virfual vapor state coincides with a state
of the gas at a density of mobile particles corresponding to the equilibrium of the vapor with
the droplet of the given size (Figure 2.4). In dense vapors, one also has to take into account the
interaction of the gas particles. In both cases, the immobile gas particles in the virtual states
create the environment for the mobile particles, identical to the environment in the real vapor
state. It follows that the condensing particles (in both really existing and virfual vapor states)
have the same energetic barriers for condensation. More generally, the kinetic conditions for
aggregation are the same in both the real and virtual states.
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Figure 2.4: Tllustration of the model of virtual states (see the text). (a) Supercritical clusters: Particles
marked with a dot are made immobile in order to retain a dynamic equilibrium. (b) Subcritical clusters:
A number of additional particles (specified by dotted circles) are added in order to retain a dynamic
equilibrium.

By definition of the virtfual vapor state, the gas must contain such a number of mobile
ambient phase particles that their chemical potential, taking into account the interaction also
with the fixed gas atoms, is equal to the chemical potential of a particle in a drop (or cluster)
of size n, i.e., i = pq(n) holds. Under such conditions, the virtual gas (or ambient) phase is
in a dynamic equilibrium with a chosen drop (cluster) of the liquid (newly evolving) phase,

i.e., the relation wi{,zfl = Nflt)lm is fulfilled. Note that this relation is a consequence of
the definition of the virtual states. It is thus quite different from Eq. (2.9) where rates of
aggregation and emission of clusters of different sizes in thermodynamic equilibrium states
are compared. Moreover, the virtual vapor state is characterized by equal probabilities per unit
time for one selected mobile atom to be added to the liquid drop as compared with a particle
at the same state (position and velocity) in the real vapor at the same overall concentration.
This property is due to the fact that the environment of the mobile atoms, by definition, is the
same as the one in the real vapor phase, or, in other words, in both virtual and real vapors,
the kinetic conditions for condensation are the same for the mobile atoms. It follows that the
probabilities wilt)lin of aggregation in the real and {E?(i)l,n in the virtual vapor have the same
kinetic preexponential factors. They differ only by the probabilities p,. and p, of occurrence of
favorable configurations for the realization of these processes with respect to a given mobile
particle.

As already mentioned, with sufficiently high precision we may assume that both real and

virtual states of the ambient phase (vapor) are each in its internal thermodynamic equilibrium.
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2.3 Ratio of the Coefficients of Absorption and Emission of Particles 19

Hence, applying the conditions wfgn)fl = &5:)1,” and the above given considerations, we get
+ +
i e (2.18)
wﬁ}ffl ﬂjizt)l,n Pr

Here p,. and p,. are the probabilities of occurrence of a favorable configuration for an incorpo-
ration of one mobile particle to the droplet from the real and virtual vapors at a given average
(thermodynamic) energy of the corresponding system (cluster or droplet surrounded by a suf-
ficiently large fraction of the ambient phase). Since in the virtual state of the ambient phase
some part of the atoms is fixed in their positions, the probabilities of occurrence of favorable
configurations obey the condition p, < p,.

Furthermore, we employ a basic relationship of statistical thermodynamics [144], i.e.,

S =kplnW. (2.19)

Here S is the entropy of a given macrostate of a system and W the number of microstates
(or thermodynamic probability) referring to the respective macrostate. In application to the
considered problem we may write

P (as - a3)

2.20
Dr k'B ( )

Here AS and AS are the entropies per mobile particle in the virtual and real vapor (virtual
or real states of the ambient phase) for each of the systems considered. The macrostates refer
here to such configurations which allow incorporation of a single mobile particle to the cluster.

As mentioned both the virtual and real states of the ambient phase may be considered to
be in an internal thermodynamic equilibrium at the respective concentrations of the mobile
particles. Moreover, the temperature of both systems is the same. The latter condition implies
that the difference of the entropies AS — AS is equal to the change of the entropy AS,,
resulting from the transfer of one mobile particle from the virtual to the real state of the
ambient phase. Moreover, the number of configurations allowing incorporation of a mobile
particle to a given cluster is larger in the real state of the ambient phase than in the virtual one.
Therefore, in the range of cluster sizes n > n,. the relation

AS — AS = AS,, >0 (2.21)

holds. In addition, one can always add to AS and AS the entropies Sy, respectively, §0 of the
rest of the systems (we consider, now and furtheron, only the respective parts of the ambient
phase in the real and the virtual states). These contributions do not change in the course of the
transfer of a mobile particle between both states. AS,, may be treated, therefore, also as the
total change of the entropy in such a transfer resulting from the respective changes AS and
AS in each system.

At given values of the external thermodynamic parameters, the change of the entropy of a
thermodynamic subsystem may be connected with the work R,.., which is the work one has

www.iran—m L\V‘dLLC(l m

Age Crwdivs 9 Olgils @ yo



20 2 Determination of the Coefficients of Emission in Nucleation Theory

to perform in a reversible process to create the same changes of the system state (the same
change of the entropy). Generally, we may write (cf., e.g., Ref. [144])

AS 1
AS = | — = — . 2.22
S (AU) Rrev TRrev ( )

Here the thermodynamic relation

oS 1
R 2.23
ou T 2.23)
has been employed, in addition. U in Eqs. (2.22) and (2.23) is the internal energy of the
considered system.

For a system at fixed values of the external pressure, p, and temperature, 7', the work per-
formed in a reversible process equals the change of the Gibbs free energy Ag in the respective
process. Taking into account, moreover, that the temperatures are the same both in the real
and the virtual states of the ambient phase, we obtain from Egs. (2.22) and (2.21)

1 A
ASn = *chv = 79

- - (2.24)

Here Ag is the total change of the Gibbs free energy in the transfer of the considered particle
from the virtual to the real state.
For one-component systems we may write immediately

Ag = /J/U — /7. (2.25)

Taking into account the relation g = pg(n), we have

AS, — Mo = Ha(n). (2.26)
T
Here, as earlier, 1, is the chemical potential of a particle in the real state of the ambient phase,
tq(n) is its value in a cluster of size n (including interfacial and other possible finite size
effects).
Combining Egs. (2.18), (2.20), (2.21), (2.24), (2.25), and (2.26), we get for the ratio of
absorption and emission coefficients the result

(+)
n—1Ln A n v
Wn-1, :eXp( S >:eXp (*ﬂ ku;(n)) (2.27)
B

It follows that the relation between the coefficients of aggregation and emission for supercrit-
ical clusters is the same as obtained earlier by applying the traditional method for thermody-
namic equilibrium states (cf. Eq. (2.14)), i.e.,

Jr
wimfﬂ o [(Fo = (n+1)
SN kT '

wnJrl,n

(2.28)
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2.3 Ratio of the Coefficients of Absorption and Emission of Particles 21

However, in the present derivation no reference was made to the so-called equilibrium distri-
butions and the (nonapplicable in nonequilibrium states) principle of detailed balancing.

Moreover, taking into account the generally valid thermodynamic relationships (Eq. (2.11)),
we may write also

(+)
Wnnt1 _ exp (_ [AG(n+1) — AG(”)]) . (2.29)

w'ELjr)l,n kBT

This relation is identical in the form to Eq. (2.10). By introducing an auxiliary function

f™)(n) as

(2.30)

f®(n) = exp (—AG(n)) :

kpT

we may express the relation between the considered coefficients in another equivalent form as
the ratio of the functions f*)(n 4 1) and f*)(n), again, i.e. (cf. Eq. (2.9)),

ng_errl - S (n+1) 2.31)
BN IO '

Note that here these functions do not have any physical meaning, however. They have to be
considered as auxiliary mathematical quantities.

2.3.2.3 Clusters of Subcritical Sizes

In the first case considered, a certain part of the particles in the ambient phase was fixed in its
positions. The kinetic conditions for aggregation for the remaining mobile particles remain
thus the same as in the real state of the ambient phase. For clusters of subcritical sizes the
concentration of aggregating particles in the ambient phase is too small to reach a dynamic
equilibrium. For this reason, in order to construct the virtual state of the ambient phase we
have to add, now, mobile particles. The total concentration of mobile particles is defined,
again, by the condition & = ug4(n). However, to retain, again, the requirement that the kinetic
conditions for aggregation have to be the same for any arbitrary particle, the newly added
particles do not interact with themselves and with the particles present in the real state of the
ambient phase. All further derivations can be carried out then step by step in the same way as
explained in detail for the range of cluster sizes n > n.. Therefore, Egs. (2.28), (2.29), and
(2.31) hold equally well for clusters of subcritical sizes.

Summarizing this part, we may conclude: we have developed a method of determination
of the coefficients of emission in terms of a macroscopic approach to the description of cluster
properties in nucleation—growth processes. The expressions like Eqs. (2.29) and (2.31) are
widely used in nucleation theory but so far without any satisfactory theoretical foundation.
Such foundation is available now via the method outlined here and resulting into Eq. (2.28).
The development of a theoretical foundation of this widely employed approach is one of the
basic results of the present chapter. In the further analyses, we will analyze some applications,
further generalizations, and consequences of this result.
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22 2 Determination of the Coefficients of Emission in Nucleation Theory

2.3.3 Applications

Once the kinetic coefficients w(~) have been determined, they may be substituted into the
kinetic equations (2.1). For the solution of particular problems, finally, the coefficients w(*)
have to be specified. Instead of applying the set of kinetic equations (2.1)—(2.4), we may go
over also to a continuous description in the form of a Fokker—Planck equation. It provides a
sufficiently accurate description of the initial stages of the condensation process. During the
initial stage, for 1 < n < n., the second derivative of the distribution function (82 f/ 8n2)
is important, because it determines the growth of the nucleus from the size n < n. to a size
n > n.. The higher order derivatives are smaller than the second-order one, if n. > 1. It
means that the main part of the nuclei spectrum lies then in the range n > 1. The spectrum of
droplet sizes in the range n ~ 1 may also be well described by this differential equation. This
is due to the fact that the character of the solution provides qualitatively correct results, even
if we apply the differential equation. Having introduced f*)(n) = exp(—AG(n)/kpT) we
get from Eq. (2.3)

R N e e ]

=1 fO(n)

9 ) e [f(nat)_f(n—lﬂf)“
=J, o {wn)nﬂf (n) ) FIm=1) (2.32)

0 [ 9AGH) 9f(n,1)
=J,+ o {wnm+1 T on f(n,t)+ n .
Therefore, the difference equation (2.2) acquires the form
of(nt) _ 0 [ 1) [_1 0AG(n)
n,n+1 kBT an

f(n,t) + W} } : (2.33)

ot on

A comparison with the ordinary continuity equation, (0p/dt) + divj = 0, shows that the
deterministic growth rate may be expressed as

dn _ () 1 (0AG (n)
G = W { T < o . (2.34)

This equation allows one to determine the coefficients of aggregation w(*) if the macroscopic
growth rates dn/d¢t of the clusters are known.

2.4 Generalization to Multicomponent Systems

Assume that both ambient and newly evolving phases may be composed of % different com-
ponents. The distribution function with respect to cluster sizes is then a function of all

numbers n; of particles of the different components j (j = 1,2,...,k) in the cluster, i.e.,
f = f(ni,na,...,ng,t) holds. Instead of the kinetic equation (2.2) we now have
k
8f(n1, no,..., t)
Q5 = [J(nj,t) — J(n; —1,t)] (2.35)
j=1
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2.4 Generalization to Multicomponent Systems 23

with
J(nj,t) = wg;)nj+1f(n1’n2’ Ce M T ) 2.36)
_ wgllmjf(nl,ng, e ,TLj —+ 1, e ,nk,t).

As a next step, again, the coefficients of emission have to be specified. This procedure can
and will be carried out in the same way as done so far for one-component systems.

2.4.1 Traditional Approach

For thermodynamic equilibrium states in multicomponent systems, the cluster-size distri-
bution may be approximated by the expression for heterophase fluctuations as (cf. again,
Ref. [144])

AG .
flea) (n1,ma,...,n;) = Aexp | — (n1, 12, 1) . (2.37)
kT
Here AG(nq1,na2,...,nk) is the work of formation of a cluster consisting of the respective

number of particles of the different components. Assuming that the preexponential factor A
depends only weakly on the composition and size of the clusters, we obtain similar to the
one-component case

(+)

Wy, - n . — .

mimtl [AG(n; +1) = AG(ny)] . (2.38)
(=) kpT

nj+1n;

w,

Here all values of the numbers of particles of the different components in the cluster except
the component j are fixed.

As a next step, we introduce the change of the Gibbs free energy, AG, of the system
when, at constant values of the external pressure, p, and temperature, 7, a cluster of a given
composition is formed in it. We have

k
AG(ny,na,...,nk) = Ga(ny,na, ..., ng) — an,uﬁ,. (2.39)
j=1
Gg(ni,mna,...,ng) is the contribution of the cluster to the thermodynamic potential including

interfacial and other possible correction terms. With Eq. (2.39), we get for example
_[AG(n17n27...,nj +1,...,n) — AG(nl,ng,...,nﬁ...,nk)}
(2.40)

zujv—de(nl,ng,...,nj—I—l,...,nk).
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24 2 Determination of the Coefficients of Emission in Nucleation Theory

Indeed, we may write

AG(n; +1) — AG(n;) = Ga(n; +1) wa — [ty —

Gd n] Z nzﬂw]

= Gd(nj + 1) — Gd(nj) — iy (2.41)

0Ga(n; + 1)
= (#) — fjo = pia(ng + 1) = pjo.

The dependences (2.40) allow us to reformulate Egs. (2.38) as

wnj;77,j+1 = exp { [ij - /J’jd(nla 712];. '2'—‘7 ny + 17 .. 7n7€)] } ) (242)
wnj—i-l;nj B

Again, for systems in thermodynamic equilibrium states this approach is quite satisfactory
provided the additional assumption (weak dependence of the prefactor A on cluster size) is
fulfilled. However, the method cannot be applied, as discussed in detail earlier, to thermody-

namic nonequilibrium states.

2.4.2 New Approach

The alternative method of determination of the relation between the kinetic coefficients in ap-
plication to thermodynamically unstable initial states relies, again, on the consideration of the
probabilities of formation of favorable configurations for a single particle to be incorporated
into the cluster (both in the real and virtual states). The derivations as outlined above can also
be applied without any qualitative modification to multicomponent systems. Consequently, as
will be shown, qualitatively the same results are obtained as derived in Section 2.3 for phase
formation processes in one-component systems. In particular, similar to Eq. (2.27) we arrive
at

(+)

Wr Z1,n; AS, Ag >
L R — ex . (2.43)
wf;) 1 p( ks > P <kBT

R

Remember that Ag is the total change of the Gibbs free energy of both subsystems (real and
virtual ones) if a mobile particle is transferred from the virtual to the real state. Taking into
account this meaning of Ag, we have

Ag = Jfinal — Jinitial, (244)

Ag=g(n; —1) = g(n; +1) = [g(n;) + g(n;)] (2.45)
or

Ag=_99 9% n (2.46)

e -1
anj on; ’ /
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2.4 Generalization to Multicomponent Systems 25

Here g or g are the Gibbs free energies of the ambient phase in the two considered states, real
and virtual ones. n; denotes the number of particles of the component j in the subsystems.
Moreover, the well-known relations

_9% L _ 9%
M]_ﬁnj7 M]_ﬁnj

are employed. With /1; = ;4 (consequence of the definition of the virfual states), we imme-
diately obtain

(2.47)

(+)

Wy, v — M s RN T sy
nging+1l _ exp [1jo — pja(na, na nj +1 ng)] (2.48)
(=) kT
wnj—o—l;nj B
and as a consequence
(+)
Wy, o in A +1)— A i
(i)) it+1 = exp { [ G(”] + ) G(n])] } ) (2.49)
wnj+1;nj kBT

In Eq. (2.48), 115, is the chemical potential of a particle of the jth component in the ambient
vapor phase, while /;q(n1,n9,...,n; +1,...,n;) is its value in a cluster of the specified
composition. As in the one-component case, the value of j1;4 accounts for surface and other
possible finite size effects. In Eq. (2.49), the values of n;, i # j, are kept constant, again.

By the introduction of an auxiliary function f*)(ny,ng, ..., ny) via
AG .
f(*)(n17n27" .,’I’Lk) =€exXp4§ — (nl,nQ’ ’nk) ) (250)
kT
Egs. (2.38) and (2.49) may be written, generally, in the form
(+) «
Wnjinj+1 /! )(nj +1)
&) = ®) (2.51)
wnj-‘rl;nj f (nj)

Here f(*) is an auxiliary mathematical function without any physical meaning, again. Thus,
the method of derivation of the rates of emission of single particles from clusters of the newly
evolving phase can be extended to multicomponent systems.

2.4.3 Applications

Once the coefficients w(~) are specified, they can be substituted into the kinetic equations.
Moreover, one can go over, again, to a continuous description in the form of a Fokker—Planck
equation. By the same method as demonstrated in Section 2.3, we obtain

f(nlan27"'7nk7t)

8f o 1o} (+) 1 5‘AG(n1, no, ... ,TLk)
o = 2 on, {“’+ inT o,

+ 8f(n1,n2,...,nk.,t)}} (252)
3nj
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26 2 Determination of the Coefficients of Emission in Nucleation Theory

or, equivalently,

Of(ni,n2, ... sni,t) <~ 0J(ny,t)
5 2 "o,

(2.53)

J(nj,t):—{wH') { 1 aAG(nl’n%"'7nk)f(n1,n2,...7nk,t)

ngins | BpT on,
+ (’9f(n1,n2, e ,nk,t)} } ) (254)
J

on;

An inspection of Egs. (2.53) and (2.54) leads to the conclusion that the macroscopic (de-
terministic) growth rates are given by

_%__ (+) 1 8AG(n1,n2,...,nk)} (255)

v = =-w, ..
J dt njin;+1 kBT anj

while the diffusion coefficients DJ{-"} in the space of independent variables {n;} are deter-
mined by
n} _ ()
Dy =wyt - (2.56)
Note that the theory of Langer [145] results in similar dependences for the description of the
evolution of the characteristic parameters of a system undergoing a first-order phase transfor-
mation. Differences between his and the theoretical approach employed here occur only in

the way the macroscopic parameters of the system are introduced, and the critical cluster size
in nucleation and the steady-state nucleation rate are determined.

2.5 Generalization to Arbitrary Boundary Conditions

Summarizing the results obtained so far we come to the following conclusions: it follows from
the analysis outlined that the basic relationships between the coefficients of aggregation and
emission are given by Egs. (2.28) (for the one-component case) and (2.48) (for a multicom-
ponent system). By applying thermodynamic identities, these relations can be transformed
into Egs. (2.29) and (2.49). In these expressions, the ratio of the kinetic coefficients is ex-
pressed via the differences of the thermodynamic potentials. Furthermore, one may introduce
auxiliary functions f (*) (Egs. (2.30) and (2.50)) in order to express the ratio of the kinetic
coefficients as the ratio of these auxiliary functions (Egs. (2.31) and (2.51)). Latter results
are similar in the form to the respective dependences obtained by the traditional approach.
However, in our method no reference is made to the so-called equilibrium distributions and
the principle of detailed balancing is not applied to nonequilibrium states. As an additional
advantage, the problem of determination of the coefficient A in the expressions for the distri-
butions of heterophase fluctuations has not occurred so far at all.
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2.5 Generalization to Arbitrary Boundary Conditions 27

In order to extend the range of applicability of the method, we have to show that similar
results can also be obtained for other boundary conditions as constancy of pressure and tem-
perature. In order to proceed in this direction we start with the basic intermediate result of our
approach, i.e., with Eq. (2.24) or

AS ! R 2.57

n — T rev . ( . )

Assume, now, not external pressure and temperature are fixed but another set of thermody-

namic parameters. Then the work R,., one has to perform in a reversible process to create

the same change of the entropy AS,, is now given by A¢ (and not by Ag). Here ¢ is the

appropriate thermodynamic potential for the selected (arbitrary) boundary conditions. Instead
of Eq. (2.24) we then obtain

1
AS, = =A¢p. (2.58)
T
Now, proceeding in the same way as in the derivation of Eq. (2.24), we get (cf. Egs. (2.44)—
(2.47))

1

ASn = 7 [ujo = pal (2.59)

Here it was taken into account, again, that the relation

99

B = G (2.60)

holds, provided the other appropriate variables except n; are kept constant. As a result we
obtain Eqgs. (2.28) or (2.48), again.

Similar to Eq. (2.39), we may express the change of the characteristic thermodynamic
function in cluster formation as

k
AD(ny,na,...,nk) = Py(ni,na, ... ,nk) — anujv. (2.61)
j=1
Proceeding in the same way as earlier, we arrive at

- [A(I)(nl,TLQ,...,nj—|—1,...,nk)—A(I)(nl,ng,...,nj,...,nk.)}
= Wjo — pja(n1,ne,...,n; +1,...,ng) (2.62)

with similar consequences.

Finally, in the derivation of the basic equations for the determination of the emission co-
efficients, it was not utilized that the temperature in the cluster has to be the same as in the
surrounding ambient phase. Therefore, the method is equally well applicable to phase forma-
tion under nonisothermal conditions. In this case, the values of the chemical potential have to
be taken at the respective temperatures of the clusters and the ambient phase. In addition, the
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28 2 Determination of the Coefficients of Emission in Nucleation Theory

basic kinetic equations have to be supplemented by relations describing the heat flow between
clusters and ambient phase (cf., e.g., Ref. [306]).

In this way, a regular method of formulation of the kinetic equations for the description
of nucleation—growth processes is developed. The method does not depend on the bound-
ary conditions applied, it can be employed both for isothermal and nonisothermal nucleation.
Moreover, since the derivation of the relation between the kinetic coefficients does not rely
on any specific features of vapor condensation but only on very general thermodynamic ar-
guments, it is equally well applicable generally to the description of any first-order phase
formation processes proceeding via nucleation and growth.

2.6 Initial Conditions for the Cluster-Size Distribution
Function

The method of determination of the kinetic coefficients, developed here, can be employed
without any reference to the so-called constraint equilibrium distributions. Such distributions
may enter, nevertheless, the description but in a reduced much less significant way via the
determination of the initial conditions for the solutions of the kinetic equations describing
nucleation and growth. Indeed, it can be assumed in a variety of applications that the initial
cluster-size distribution after the quench into the unstable state corresponds to some extent to
the spectrum of heterophase fluctuations existing in the initial equilibrium system before the
quench took place. Alternatively, one may suppose that for small cluster sizes the distribution
is more or less well expressed by the respective expressions for heterophase fluctuations even
in thermodynamically unstable states.

For the determination of the initial conditions, following such an argumentation, only the
value of the preexponential factor A in the expressions for heterophase fluctuations [144]

AG(’I’Ll, no, ... ,nk)
kT

flni,na,...,nE) = Aexp (— (2.63)

has to be known or, in other words, the limit of the respective distributions for very small clus-
ter sizes n; — 0. Once the initial cluster-size distribution is determined the further evolution
is governed by the kinetic equations themselves. It is also only the value of A, i.e., the limit
of the distribution for small sizes of the clusters of the newly evolving phase, which has to be
known in order to derive expressions for the steady-state nucleation rate and the steady-state
cluster-size distribution (cf., e.g., Ref. [298]). From such a point of view, limiting consistency
has to be considered as a fundamental property, i.e., the cluster-size distributions at small clus-
ter sizes have to be expressed accurately, while the shape of the expressions, like those given
by Eq. (2.63), for large cluster sizes is of no relevance for nucleation (cf. also [355]).
Moreover, (i) since relations of the type as given by Eq. (2.63) do not reflect real equi-
librium distributions which may evolve in thermodynamically unstable states, (ii) they are
applied exclusively in order to determine possible initial states for real cluster-size distribu-
tions in the considered nonequilibrium states; the fulfillment of the mass action law is no
longer considered, to our opinion, as a necessary fundamental condition for the validity of
the respective distribution (see, in contrast, Refs. [352,353]). The coefficients A may or may
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2.6 Initial Conditions for the Cluster-Size Distribution Function 29

not obey such property, at part, in dependence on whether these distributions are determined
mainly by the initial equilibrium state before the quench took place or by the way the system
is transferred into the considered nonequilibrium state. From such a point of view, the fulfill-
ment of the mass action law is not an appropriate starting point for a possible redetermination
of the value of the parameter A and the formulation of different specific versions of nucleation
theory.

In order to have a guide for the determination of possible initial conditions for the cluster-
size distributions, let us summarize, finally, some attempts in the determination of the param-
eter A for different special cases (cf. also [355]).

(i) For one-component systems, following Frenkel [71], the parameter A may be deter-
mined from the limiting condition as (cf. Eq. (2.5))

A=c (2.64)
Here c is the volume concentration of single particles in the ambient phase.

(ii) For clusters of arbitrary composition, following Reiss [206], the relation
k
A=c= Z ¢ (2.65)
j=1

could be taken as a first approximation. Here c; denotes the volume concentration of
the different components in the ambient phase, which are able to enter the new phase.
Equation (2.65) can be founded, similar to Eq. (2.64), via the basic ideas of fluctuation
theory as representing the number of particles able to act as centers of condensation. The
probability that, indeed, a cluster of some definite but arbitrary composition is formed at
a given nucleation site is determined then by the exponential term.

(iii)) An extended discussion of different attempts for a proper determination of this coef-
ficient for one-component and binary systems was given by Wilemski and Wyslouzil
[352,353]. They proposed (in application to binary systems) the relation

k
A=c]](z8)" (2.66)
j=1

as a better approximation. This expression fulfills the limiting conditions for one-
component clusters and, in addition, the mass action law. In Eq. (2.66), ;g is the
molar fraction of the different components in the ambient phase, while ;. is the molar
fraction of the different components in the cluster considered. It is determined as

nj

—
> i
i=1

(2.67)

Tja =
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30 2 Determination of the Coefficients of Emission in Nucleation Theory

(iv) For clusters of a given stoichiometric composition (cf. also Refs. [293, 304]) the total
number of nucleation sites is equal to the number of particles in the system able to enter
the new phase. We have for that number

k
c=> ¢ (2.68)
j=1

A heterophase fluctuation with a given composition can be formed in the ambient phase
if a favorable configuration of particles of the different components is developed. Con-
sidering the motion of the different particles as independent, the probability of such an
event is equal to the product of the molar fractions x;g of the different components ¢
in the ambient phase, each of them taken to the power x;,. As a result we obtain the
following expression for A (cf. Refs. [293,304]):

k
A=c]]=j} (2.69)
j=1

Most of the above-mentioned considerations concerning the initial state of the cluster-size
distribution function can be carried out equally well without any reference to expressions like
Eq. (2.63). Therefore, even for the determination of the initial conditions the reference to
distributions like that given by Eq. (2.63) may be avoided at all.

2.7 Description of Cluster Ensemble Evolution
along a Given Trajectory

2.7.1 Motivation

The set of kinetic equations as outlined above allows us to determine the evolution of the
cluster-size distribution function for phase formation in multicomponent systems in a com-
plete way. However, with an increase of the number of components in the system, the compu-
tation times increase dramatically. For this reason, a comprehensive description of the whole
course of nucleation—growth processes based on the numerical solution of the sets of kinetic
equations is possible presently for one-component and binary systems, only (cf., e.g., [251]).

In a number of cases, the problems can be reduced significantly. Indeed, following the
classical approach to nucleation—growth processes, one can distinguish the case that the clus-
ters of the newly evolving phase have widely the same composition and structure as the newly
evolving macroscopic phase. In these cases, which are illustrated in Figure 2.1, the task to
be solved is reduced to a one-dimensional problem. The clusters consist here of units with a
given well-defined composition, {x;, }. This problem has been analyzed in detail for the first
time in [293,304]. However, in general, the composition and state of the clusters will change
with cluster size and variations of the state of the ambient phase. For this reason, the classical
assumption of independence of the state of the clusters on their sizes can be considered, in
general, as a crude approximation, only.
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2.7 Description of Cluster Ensemble Evolution along a Given Trajectory 31

Quite recently a new general approach to the description of nucleation—growth processes
has been developed [253-255,260] (cf. also [257,258]). This approach allows a theoretically
founded determination of the path of evolution of the clusters in the space of cluster parame-
ters or, in other words, a description of the changes of the state parameters of the clusters with
their sizes. The respective situation is illustrated in Figure 2.5. The details of this approach are
outlined in the papers cited. Here it is only of importance that in this very general case a reduc-
tion of the description from the determination of the distribution function f(nq, na, ..., ng,t)
to a description in terms of a distribution function f(n,¢) is possible as well. The respective
transformations are described below.

[
(=]
T

Yo = *macro

=
[ee}
T

o
[o)}
T

N
~
T

=
[\
T

Cluster composition, X,

(=]

0 1 2 3 0 02 04 06 08 10 12 14
Reduced radius, R/R. ny/ng

Figure 2.5: Illustration of the evolution of the cluster in the space of cluster parameters for segregation
processes in regular solutions [253-255].

2.7.2 Effective Diffusion Coefficients

The variation of the number of particles of the ¢th component in the cluster is determined via
(cf. Eq. (2.55))

dn; . 1 8AG(n1 ng, ... nk)
U~ _47R%j; = —w'P) 12 . 2.70
a T = T Wit | o o, 2.70)
Moreover, the relations
k
Ni = NMNMpTia, Vo =NWa,  Wa =Y MpTiaWia 2.71)
i=1

hold. Here w;,, is the volume per particle of the ith component in the cluster, n is the total
number of structural units of the newly evolving phase in the cluster of volume V,,, or radius
R. ny denotes the number of particles in a structural unit of the newly evolving macrophase
in equilibrium with the ambient phase, and w,, is the volume of a structural unit of the newly
evolving phase in a cluster. For the case where the clusters can be considered as multiples of
a basic unit of the newly evolving phase, n; can be identified with the number of particles in
such a unit. If the clusters change their composition with cluster sizes, n; loses its definite
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32 2 Determination of the Coefficients of Emission in Nucleation Theory

physical meaning and will be determined such as to allow an expression of the basic kinetic
equations in the most simple form. In any of the considered cases, it is a constant parameter.

Further, based on Eq. (2.71) (we take the derivative of the identity n; = nnyx;, with
respect to time) and taking into account that the composition of the clusters depends uniquely
on cluster radius, R, or particle number in the cluster, n, we may write

d 3 da;
d_’t‘ — _4nR? (VJ—’) Vi =T <xm tn (i’f) . (2.72)

Since the left-hand side of the first of Egs. (2.72) does not depend on the particular component
considered, the right-hand side must have the same value for each of the components. This
way, we get

ST for =12, k1. (2.73)
Via Vika

As is evident from the derivation, we assume here that the different components may move,
in principle, independently. Nevertheless, the motion is coupled by the requirement that the
composition of the clusters is a well-defined function of its size.

Equation (2.72) allows us to express the change of the number of ambient phase units,
n, via the fluxes of any of the components in the system. Now, as the next step, the terms
(0AG/0n;) in Eq. (2.70) will be replaced by the change of the characteristic thermodynamic
potential G(n+1)—G(n), if the cluster size is increased from n to (n+1). Instead of G(n) and
G(n + 1), we will use here the differences AG(n) = G(n) — Gnom between the respective
heterogeneous and homogeneous initial states. This procedure will be performed here for
the case where pressure and temperature are kept constant. As can be checked easily, the
derivation can be repeated in a similar form for any other boundary conditions with identical
results.

The change of the thermodynamic potential in such a process can be written as

k
Gn+1) - G(n) = J2CM) 5, _ 3 (MG("I’"Q’ ak 7"’€)> Ani.  (274)

dn — on;

Hereby the values of An; cannot be chosen arbitrarily; they are uniquely determined via An
as

An; = Vo An. (2.75)

With the condition An = 1 and Eq. (2.75), we arrive at

dAG(n) o (OAG(ni,ns, ... )
e ; ( s Vi (2.76)

Finally, Egs. (2.70) yields

47RZ 1 90AG(ni,na,...,nk)
i = . 2.77
w§z+)n+1 ! k:BT 87’li ( )
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2.7 Description of Cluster Ensemble Evolution along a Given Trajectory 33

Multiplying both sides of Eq. (2.77) with v;, and taking the sum over all components, we get
with Egs. (2.72), (2.73), and (2.76)

. k 9
Ji % 1 dAG(n)
47 R? o — 2.78
g <l/m> Z w) kgT dn 2.78)
=1 “nin;+1
and
dn 1 1 dAG(n)
— = — . 2.79
dt k ( 2 ) kgT dn ( )
E 1
i=1 wﬁf;)mﬂ

A comparison with Eq. (2.34) shows that the growth rates for the clusters can be written,
again, in a one-dimensional form as

dn (+) 1 dAG (n)

2 ==\ 2.80

ar . Wnn {k:BT ( dn (2.80)

with
) _ 1

Wl = - (2.81)
Z ( Via )
i=1 ws:ri;)'rzi—i-l

Similarly, we can also express the change of the volume of a cluster of the new phase
consisting of n ambient phase units. The change of the volume of a cluster of the new phase
can generally be written as

k
dv, .
—dt“ = —47R*) " wiji- (2.82)
=1
With Eq. (2.70), we get
av, z’“: dn; 283
— = Wia ;- .
dt &7 de

Equation (2.71) yields further

dn; dn
— . 2.84
Ve (2.84)

resulting in

k
dv, dn
Do _ 1 e b 2.85
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34 2 Determination of the Coefficients of Emission in Nucleation Theory

Following Refs. [293,304], one can now obtain expressions for the rates of growth of the
aggregates of the new phase or the kinetic coefficients wg)m 1 for the different mechanisms

of cluster growth of interest. Taking into account that D}/ a% is the frequency with which a

particle of the ith component hits the interface of a cluster of radius R and 47 R? agcgg) is the
number of particles of the considered component capable to reach the interface in one step of
motion, we obtain

(+) _
nisni+1

=L (4mR2(y)). (2.86)
ag

Here Dy are the partial diffusion coefficients of the different components in the ambient so-
lution near the interface while ag is a characteristic length scale of the ambient phase defined
via

k SORNTE
wg = waxw, ag = <E> . (2.87)
=1

The parameters w; g describe the characteristic volumes of different components in the ambient
phase. They are connected with the respective size parameters, a;g, via
AT o

wig = ?am. (2.88)

Assuming steady-state conditions, the volume concentration of particles of the ith compo-

nent near the interface, CE;), can be determined by the balance of diffusional fluxes and fluxes

from the ambient phase to the cluster. We get after some algebra

1

(s) _
ciﬁ = Cip Ly D;k R
Di ag

Here c;p is the average volume concentration of the respective component in the ambient
phase. D; are the partial diffusion coefficients of the respective components in the bulk. The
diffusion coefficients D and D; are connected by the relations D] = D;«;, where o; obeys
the inequality a; < 1. With Eq. (2.71) and a,, = (3wa/47)/3 or R = ann'/?, respectively,
we can express the coefficients w£L+)n 1 in the form (see also Chapter 5 and [247])

()-
1/3 a6 . (2.90)

(5 ()

Finally, the volume concentration of the ith component in the ambient phase, c;g, can be
expressed as

(2.89)

(+)
Wy i1 = 4w D} cigaan

k
n; n n;
Cip = %ﬁ = C3T;g3, cg = Vﬂ7 Tig = #57 ng = anﬁ (29])
j=1
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2.7 Description of Cluster Ensemble Evolution along a Given Trajectory 35

(+)

In the general form, the expression for w,, ", ; is then given via
Dy -
oo [ o (B0) (22) ]
Wt 4dmegain Z D; ag 2.92)
n,n+1 ap P D:xzﬂ : :

Equation (2.92) represents the most general expression for the determination of the quantity
wiltz 41 Itis a rather nontrivial function of the kinetic and thermodynamic parameters of the
different components in the multicomponent solution considered.

As already mentioned, in the case of formation of a new phase with a given stoichiometric
composition, the total number of particles, ny, in a basic unit of the new phase is well defined.
For the more general case considered here that the composition of the cluster changes with
cluster size, such well-defined units do not exist. For this reason, we will set n;, equal to one
(cf. Eqg. (2.71)). With such definition, n gets the meaning of the total number of particles in a
cluster. We then have

4 2 2/3
wit) | = T %a (2.93)
i+ (5) (32) )
k Via 1+ =+ — | n
DY o
i=1 Dixip
with (cf. Eq. (2.72))
Tio = <xm T ndx“"> (2.94)
dn
or, equivalently,
4D 2,,2/3
Wiy = el (2.95)
as
D\ [aa\
s (F) ()]
i B8
= . 2.96
Deg Z D; g (2.56)

For the case of kinetically limited growth (if the conditions 1 >> (D} /D;)n'/? are fulfilled
for any of the components), we have

k i
W) _ AmDigegadn®? 1 3 _ Vi (2.97)
nntl ag ’ Dy wipai Dy '

For diffusion-limited growth of the clusters (if the conditions 1 < (D} /D;)n'/3 are fulfilled
for any of the components), we similarly get

k ~
. 1 2
wi) | = dmegan Dignt/?, = PR (2.98)
eff ; 2 ?

=1
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36 2 Determination of the Coefficients of Emission in Nucleation Theory

With ws = V/ng = 1/cs, we can always make the replacement 47cg = 3/aj in the above
equations.

2.7.3 Evolution of the Cluster-Size Distribution Functions

According to theoretical developments discussed, we may write down the following expres-
sions for the determination of the evolution of the cluster-size distribution with time

AG(n) - BATG(n - 1>} } (2.99)

% = ng_)l,n, {f(n — 1,t) — f(TL,t) exp |:

ol {—f(n,t) CFn L) exp {AG(n +k13)1? AG(n)} } .

For the distribution function f(n = 1,¢) at n = 1, we employ the relation

k
- 3
f(nzl,t)zc,gjzl_[lxjfj , cﬁzﬂ. (2.100)

Here cg is the total volume concentration of the particles of the different components in the
ambient phase, x ;3 the molar fraction of the different components in the ambient phase and,
2o the composition of the cluster phase in the limit R — 0 (or n — 1).
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Figure 2.6: Illustration of the cluster evolution if the newly developed approach to nucleation—growth
processes is utilized as outlined in detail in Refs. [253-255] (cf. also [257,258]).
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2.8 Conclusions 37

The effective values of the coefficients of aggregation, wr(ﬁz 1 1» are given by Egs. (2.95)
and (2.96). Assuming, in addition, D; = D}, we get

n,n+1 ap - a_a n1/3
ag

This expression is reduced to previously discussed cases under well-defined limiting condi-
tions.

According to the analysis of segregation processes in regular solutions illustrated partly
in Figure 2.5 (cf. [253-255, 260]), initially the preferred cluster composition is equal to the
composition of the ambient phase. In such cases, however, the cluster cannot be distinguished
from the ambient phase. This way, the real cluster evolution starts only when the parameters
start to deviate from the respective values they have in the ambient phase. As evident from
the figure, such processes start at cluster sizes near the critical one. In the further evolution
the composition of the cluster changes then dramatically until values close to the respective
macroscopic parameters are reached. This situation is illustrated in Figure 2.6. It deviates
dramatically from the classical picture of nucleation and cluster growth shown in Figure 2.1.

2.8 Conclusions

In the discussion of our results we would like to stress two points. First of all, we would like
to underline once more that a regular method has been developed allowing one to determine
the emission coefficients once the coefficients of aggregation are known. The basic equa-
tion (2.48) can be widely applied independent of the application and the boundary conditions
considered. The method allows one to eliminate such artificial constructs as constraint equi-
librium distributions from the theory as well as the incorrect application of the principle of
detailed balancing to nonequilibrium states.

Second, as an intermediate step in our analysis, we introduce an idealized model, as we
called it, virtual states. According to the definition, virfual states are such states for which
a dynamic equilibrium between cluster and ambient phase is established. This is the only
property employed in addition to the widely accepted assumption of the existence of a local
equilibrium in the ambient phase in the vicinity of the clusters of the new phase. In this respect
our approach is similar but more general as compared with the application of Kelvin’s (or the
Gibbs-Thomson) equation. In applying Kelvin’s equation the same question is posed as in our
analysis, i.e., what should the state of the system be to attain dynamic equilibrium for a cluster
of a given size. Starting with our basic equation (2.28) (e.g., in application to one-component
systems)

Wy, n, v 1
1 — exp <M fa (n + ))7 (2.102)

www.iran—m L\V‘dLLC() m

Age Crwdivs 9 Olgils @ yo



38 2 Determination of the Coefficients of Emission in Nucleation Theory
applying the perfect gas law
=™ p

and the equilibrium conditions for a drop of given size in the gas

* o(n+1
pa(n+1) = polpe(n +1),T] = p*) + kpTn [%], (2.104)
we arrive at
_ 1
wi o, = whh {p”(nTH] : (2.105)

Here p™) is the pressure in some reference state and p, (n + 1) is the pressure in the vapor if a
drop of size (n + 1) exists in dynamic equilibrium in the vapor phase. Similarly condensation
in multicomponent perfect gases or segregation in multicomponent perfect solutions may be
discussed. Here approaches based on Kelvin’s equation and our method lead to equivalent
results. Latter one is, however, more straightforward and applicable directly also to phase
formation in nonideal vapors, nonideal solutions and beyond.

Finally, having developed a theoretical foundation of the expressions for the coefficients
of emission in terms of a mesoscopic approach to nucleation—growth processes by general
thermodynamic methods, we have not even touched the problem of determination of the ap-
propriate expressions for the chemical potential of a particle in a cluster of given size or, in
other words, the work of formation of a cluster of given size. Such a further step in the analysis
is required in order to apply the theory to particular problems. Here a detailed thermodynamic
analysis for each specific kind of phase transformation is further necessary. In the present
book we cannot and will not make the analysis more explicit but refer to the overviews given
in Refs. [3,253-255,257,258]. In the subsequent chapters, the assumptions concerning the
thermodynamic properties of the systems analyzed will be specified in each considered case in
detail. Here we will start with the simplest classical approach assuming that the clusters of the
newly evolving phases have properties widely similar to the properties of the newly evolving
ambient phase.
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3 Kinetics of Nucleation—-Growth Processes:
The First Stages

3.1 Introduction

The modern theory of nucleation was worked out in its basic premises first by Stranski,
Kaischew (1934) [113], Becker and Déring (1935) [24], Volmer (1939) [337], Frenkel (1946)
[71], Zeldovich (1942) [357] and others. With modifications it is till now the most widely
applied tool in the interpretation of experimental results on nucleation—growth processes (cf.,
e.g., [245]).

The mentioned theoretical approach was developed originally in order to determine the
steady-state nucleation rate, J, i.e., to estimate the number of supercritical clusters formed per
unit time interval in a unit volume of a thermodynamically metastable system. In the further
development of the theory, nonsteady-state effects have been intensively studied which are
due to the finite time required for the system to reach steady-state conditions (for an overview
see, for example, Zettlemoyer [358], Binder and Stauffer [28], Binder et al. [29,32], Gunton et
al. [93], Trinkaus and Yoo [329], Shi et al. [265], Shneidman and Weinberg [267,268], Demo
and Kozisek [60], Gutzow et al. [94,95]).

There exists, however, also another reason why the determination of the steady-state nu-
cleation rate cannot give a comprehensive information concerning the course of nucleation
processes. In most practical applications, a steady state can be established in a system only
for a limited period of time. This effect is due to a depletion of the state of the system, i.e.,
the decrease of the number of particles which can be incorporated into the new phase (see
also Tunitskij [330], Wakeshima [344], Binder and Stauffer [28], Rusanov [217], Gunton et
al. [93], Schmelzer [220], Schmelzer and Ulbricht [230], Ulbricht et al. [331], Barrett and
Clement [20], Grinin [91], Kuni et al. [139, 141]). As has been shown (cf., e.g., Schmelzer
et al. [220, 230, 331]), depletion effects affect nucleation quantitatively and determine qual-
itatively the whole course of first-order phase transformations proceeded by nucleation and
growth. As a result of such depletion effects, in particular, only a finite number of clusters
develop in the system (cf. Chapter 5 and Schmelzer et al. [164,247], Slezov et al. [298]). In
fact, the situation is similar in phase formation processes proceeded by spinodal decomposi-
tion. Here also changes of the state of the system in the course of the transformation determine
qualitatively the whole course of this process (cf. [238,245,250]).

The determination of the number of clusters formed in a thermodynamically metastable
system in dependence on the initial supersaturation and the average size of the clusters ob-
served initially in nucleation experiments is one of the tasks which are beyond the scope of
classical nucleation theory and most of its modifications and generalizations. The knowledge
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40 3 Kinetics of Nucleation—-Growth Processes: The First Stages

of these characteristics is, however, of a great technological importance allowing one to vary
the dispersity of the newly evolving phase in the ambient phase and in this way the proper-
ties of the respective materials. In addition to classical applications like in materials science
(see, e.g., Johnson et al. [110], Koiwa et al. [128]) or condensation of gases (Kulmala and
Wagner [135], Hale and Kulmala [98], O’Dowd and Wagner [193]), the knowledge of the
dependence of the number of clusters formed in nucleation—growth experiments on the initial
supersaturation may shed some light also on such problems as the understanding of fragment
or cluster-size distributions in molecular or nuclear clustering processes (see, e.g., Miiller et
al. [186], Schmelzer et al. [240], Smirnov [316]).

The aim of the present chapter consists in the analytical description of the initial stages
of first-order phase transitions proceeded by nucleation—growth processes. Analytical expres-
sions for the time evolution of the cluster-size distribution function and the flux in cluster-size
space are derived. In addition, estimates of basic characteristics of this process like the num-
ber of clusters, N, formed in nucleation—growth experiments and their average size, (R), in
dependence on the initial supersaturation in the system, the duration of the different stages of
the nucleation—growth process are developed. In this way, a quantitative description of all of
the basic characteristics of the initial stages of first-order phase transformations is obtained.

The method employed here is a generalization of previous attempts (Slezov et al. [298]).
In the present approach, different approximations in the solution of the Frenkel-Zeldovich
equation have been employed which are appropriate for the respective ranges of cluster sizes.
This method allows us to determine the basic characteristics of the initial stages of the consid-
ered process in a relatively simple, but at the same time sufficiently accurate, way. Moreover,
the method used here is not restricted in its applicability to phase formation in perfect gases or
mixtures. It can be applied quite generally independent of any particular properties of the sys-
tems under consideration. Such specific properties enter the description only in the evaluation
of the final analytical expressions. This property allows a straightforward application of the
results to the interpretation of experimental findings. In addition, the accuracy in the approx-
imations involved could be improved. Moreover, the analysis is carried out simultaneously
both for diffusion and kinetically limited growth. Simultaneously, also the generalization to
phase formation in multicomponent systems is given for the cases, when the newly evolving
phase has a given stoichiometric composition (cf. also [243,293,304,309]). This way, a ma-
jor part of possible applications to the interpretation of experimental results is covered. As
mentioned, the method of analysis has the advantage that relatively simple expressions are
obtained for the different characteristics of the first stages of the nucleation—growth process.
Nevertheless, extended mathematical derivations are required to get the desired results. For
this reason, the basic results are summarized at the end of the chapter in a compact form.

The present chapter is organized as follows: in Section 3.2, the basic equations required
for the subsequent derivations are summarized. Section 3.3 deals with nonsteady-state effects
in the initial stage of the nucleation—growth process, the determination of the steady-state
nucleation rate, the steady-state cluster-size distribution and the way it is established, as well
as with the specification of characteristic time scales of the first stages of the transformation.
Based on these results, in Section 3.4 expressions for the time dependence of the flux in
cluster-size space and cluster-size distribution in the range of cluster sizes larger than the
critical one are established. In Section 3.5, the duration of the time interval for steady-state
nucleation is determined. The knowledge of this time interval finally gives the possibility
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3.2 Basic Kinetic Equations 41

of determining the number of clusters formed in the system, the time interval of dominating
independent growth, and the average size of the clusters (Section 3.6) after the transformation
has reached a certain degree of completion (cf. Binder and Stauffer [28]), i.e., at the end of
the stage of dominating independent growth of the clusters. In Section 3.7, a comparison of
our results with the Kolmogorov—Avrami-type approaches [13,49,129,191] to the description
of the kinetics of phase transformation processes is given. In particular, the relation between
the time of steady-state nucleation and the so-called induction periods of the transformation
is discussed. In Section 3.8, the results are extended to phase formation in multicomponent
systems with a given stoichiometric composition. In Sections 3.9 and 3.10, a summary and
discussion of the results is given and some further possible developments of the theoretical
approach are anticipated.

3.2 Basic Kinetic Equations

In a continuum approximation, the evolution of an ensemble of clusters formed by nucleation
and growth processes can be described by a Fokker—Planck equation of the form (see, e.g.,
Chapter 2 and [293,298])

of(n,t) 8 {w(+) |:8f(nat) 4 ft) 3A‘b(”)}}.

ot on | ™t on kT on

3.DH

This equation in commonly denoted as Frenkel-Zeldovich equation. Note that, as was shown
in Chapter 2, this equation can be obtained without applying the concept of constraint equi-
librium distributions and the principle of detailed balancing in the determination of the coef-
ficients of emission from the clusters (see also [293, 302, 303, 306]). The equation is shown
thus to be fundamentally correct both for equilibrium and nonequilibrium states of the system
independent of the size of the clusters considered.

In Eq. (3.1), f(n,t) is the cluster-size distribution function obeying the condition

/ f(n,t)dn = N (¢), (3.2)
0

where N (*°%)(¢) is the total number of clusters per unit volume in the system with sizes n > 1,
kp is the Boltzmann constant and 7" is the absolute temperature. n is the number of building
units in a cluster of the newly evolving phase, and ¢ denotes the time.

In Eq. (3.1), witz 1 is the probability that per unit time interval a primary building unit
is added to a cluster consisting initially of n such units. The clusters are assumed to be
of spherical shape with a radius R. A® in Eq. (3.1) is the change of the (relevant for the
given boundary conditions) thermodynamic potential resulting from the formation of a cluster
consisting of n building units.

The cluster-size distribution function f(n, t) obeys the boundary condition

F(n— 0,t) = c(t). (3.3)
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42 3 Kinetics of Nucleation—-Growth Processes: The First Stages

The actual concentration c(t) of single particles is given hereby by the mass-balance equation
co =c(t) + /nf(n,t) dn. 3.4
0

Here ¢y is the concentration of single particles provided the segregating phase is totally dis-
solved in the solution, i.e., exists in the form of single particles only. It is assumed that such a
state is realized at the beginning of the nucleation—growth process.

Equation (3.1) retains the same form also for more complex cases of phase formation,
like bubble formation (in limiting cases, cf. [159, 160]), vacancy cluster evolution in metals
under irradiation [301, 350], crystallization [94], and nucleation—growth in multicomponent
solutions of a new phase with a given stoichiometric composition [298]. The results of the
theory outlined are applicable thus with slight quantitative modifications also beyond the case
of segregation in solid or liquid solutions considered as an example here.

The change of the cluster-size distribution function, f(n,t), with time is connected with
the flux, J(n,t), in cluster-size space by

of(n,t)  9J(n,t)

ot on '

o [Of(n,t)  f(n,t) 0A®(n)
J(n,t)wn’nﬂ{ int) Lo )05 }

A comparison of Eq. (3.1) or Egs. (3.5) and (3.6) with the respective relations describing
mass transport processes in real space proves that the velocity of deterministic growth of a
cluster in cluster-size space v(n,t) is given by (cf. Section 2.4)

dn 1 0A®(n

(3.5)

(3.6)

(+)

It follows furtheron that the kinetic coefficient w,, ,

cient D(n, t) in cluster-size space. We have

1 has the meaning of a diffusion coeffi-

D(n,t)=w'), > 0. (3.8)
In the initial stages of phase formation, the growth of the building units of the newly

evolving phase is limited usually kinetically by processes of incorporation of monomers of
(+)

the segregating phase into the cluster. In such cases, the kinetic parameters w,, ,,, may be
written in the form (cf. Eq. (2.97) and also Chapter 5)
Here the notations

ws = %rai, W = %aﬁn (3.10)
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3.2 Basic Kinetic Equations 43

are introduced. wy and w,, are the volumes of a monomeric building unit of the segregating
particles in the newly evolving phase and the ambient phase, respectively, and as or a,, are
their linear sizes. Moreover, the relation

(;%) R}=n (3.11)

is used. D) is the diffusion coefficient of the segregating particles in the ambient phase in
the immediate vicinity of the aggregates of the new phase.

In certain cases like bubble formation in liquid gas solutions, vacancy formation in solids
under irradiation, nucleation of gas-filled voids in solid solutions and, in particular, at later
stages of the nucleation—growth process, the formation and growth of the clusters of the newly
evolving phase may be determined by diffusional fluxes of the segregating particles to the
aggregates of the newly evolving phase. In this case, we have (cf. Eq. (2.98))

w'), | = drDagen'/. (3.12)

Here D is the coefficient of bulk diffusion of the segregating particles.

To carry out the subsequent derivations independently of the individual mechanism con-
trolling the formation and growth of the clusters, we introduce two parameters «; and « and
a dimensionless time scale 7. These quantities are defined for kinetically limited growth as

2 DMt
a1 :wi/?’w}ﬂw, K= -, T = . (3.13)
3 a2,
For bulk diffusion-limited growth we have similarly
1 Dt
a1 = ws, K= 37 T= a—z. (3.14)
With these notations we get
D& ..
3acen’ = kinetically limited growth
a’m
w;:;zﬂ — (3.15)
3oqcn’“22 diffusion-limited growth
aS

It is evident that wfltz 11 1s, in general, a time-dependent quantity due to the dependence

of the average concentration c of the segregating particles in the matrix on time. However,
as will be shown in Section 3.5 (see also [298]), in the first stage of the nucleation—growth
process, variations of the concentration are not significant. In these cases, ¢ can be replaced
by the initial concentration cy.

As mentioned already, A® in Eq. (3.1) is the change of the characteristic thermodynamic
potential resulting from the formation of a cluster consisting of n building units. Assuming
constancy of the pressure p and temperature 7', ® has to be identified with the Gibbs free
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44 3 Kinetics of Nucleation—-Growth Processes: The First Stages

energy and, in line with the approach commonly employed in classical nucleation theory, we
may write

Ad = —nAu+dA, Ap=ps(p,T) — pa(p,T). (3.16)

The subscript 3 specifies the chemical potential 4 per building unit in the ambient phase, while
« refers to the respective value in the newly evolving phase (both taken at a temperature 7" and
a pressure p). The surface area of the cluster is A and o is the surface tension or interfacial
specific energy.

A number of generalizations of Eq. (3.16) have been developed in the past (see, e.g.,
Lothe and Pound [158], Fisher [69], Reiss et al. [207], Oxtoby et al. [198], Reiss et al. [208],
Schmelzer et al. [239]). However, since the classical expression was shown to work well in a
large variety of applications, we will use here Eq. (3.16) with a cluster size independent value
of the surface tension (capillarity approximation) leaving possible generalizations to a future
discussion (see also [249]).

The surface area A of the cluster, assumed, as mentioned, to be of spherical shape, can be
expressed through the number n of particles in the cluster by (cf. Eq. (3.11))

2/3
A = 47R? = 47n2/3 (3“’> . (3.17)
47

In terms of the number of monomers in the cluster, Eq. (3.16) can be reformulated thus to give

2/3
3ws
Ad(n) = —nAp+ asn?/3, ag = 4o ( 4‘:1_ > . (3.18)

With these notations, the critical cluster size n., corresponding to a maximum of the Gibbs
free energy, is given by

8A‘b(n) 1/3 _ 20{2

2
— _A z -1/3 _ ¢ ) 3.19
on | pt oo, TV (3.19)
Moreover, for the second derivative of A® we obtain
O?Ad(n) 2 4
R M L (3:20)
These expressions will be used below for subsequent derivations.
In particular, the value of A® at n = n.. is given by
1 4 a3
Ad(n,) = —asn?/? = [ — | —%_. 3.21
(ne) = gazn. 27 ) (Ap)? (3-21)

Moreover, the range dn. of n-values in the vicinity of the extremum of A®, where the in-
equality

AD(n.) — A®(n) < kpT (3.22)
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3.2 Basic Kinetic Equations 45

holds, and thermal fluctuations determine the motion of the clusters in cluster-size space, can
be written as

1
|n —ne| < one = . (3.23)

1 (62A<D )

C2kpT \ on2

With the above-derived equations we obtain

- =5 () 625

o () =2 lmm ) - 626
2

v(n, 1) = ?TZ = 3a, Ben” [# - #] . (3.28)

Practically in the whole analysis, specific expressions for the chemical potential difference
Ay are not required. They have to be employed only in applications of the final results of the
theory to specific systems. For completeness, the respective expressions for Ay are given,
however, already here.

In general, the chemical potential of the segregating component in a solution can be ex-
pressed as [97]

1s(p, T, 8) = ps(p, T, 6) + kpTln (%) . (3.29)

eq

Here ¢ is the activity of the respective component and ¢£2°) is its value in equilibrium with the
newly evolving phase at a planar interface at the given values of pressure p and temperature
T'. This expression results in

Ap = kpTIn (%) : (3.30)

eq

For illustration purposes and comparison, we will also refer from time to time to segre-
gation in a perfect solution. For perfect solutions, the chemical potential of the segregating
particles in the ambient phase may be expressed in the form

&
1s(p, T, ¢) = pg(p, T, ) + kpT ln (W) , (3.31)
Ceq
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46 3 Kinetics of Nucleation—-Growth Processes: The First Stages

resulting in (cf. Eq. (3.16))

Ap=kpTln (@) . (3.32)
eq
Similar to the case of real solutions, céif” is the concentration of the segregating particles in

the ambient phase in equilibrium with the newly evolving phase at a planar interface at the

given values of pressure p and temperature 7". By definition of c£3°) (or qsg‘;f)), the relations

pa(p,T) = pa(p, T, c((,go)) (or, in general, yio(p, T) = ug(p, T, ¢§3°>)) hold. These relations

were used, in addition to Eq. (3.16), in the derivation of Egs. (3.30) and (3.32).

3.3 Nonsteady-State Effects in the Initial Stage of
Nucleation

When an equilibrium system is brought into a metastable state by a rapid quench, the initial
cluster-size distribution is determined by the spectrum of heterophase fluctuations which were
present in the equilibrium state. This initial cluster size distribution f(n,0) is a rapidly de-
creasing function of n, i.e., the relation (0f(n,0)/0n) < 0 holds. In the metastable state
the negative gradient (0f(n,0)/dn) in cluster-size space results in a flux into the positive
direction of the n-axis compensated at part by the deterministic flow term proportional to
(O0AD/On) (cf. Eq. (3.1)).

Starting with the considered initial state it takes some time, the so-called time lag in nu-
cleation, to establish a time-independent flux in an interval 0 < n < g. The length of this
time lag depends, in general, on the chosen value of g. We demand that g fulfills the condition
g > (nc + dn¢) due to the following considerations: Once a cluster has reached this size,
the further evolution in cluster-size space is dominated by the deterministic growth term in
Eqg. (3.1) and not by diffusion-like processes as it is the case in the interval (n.—dn., n.+0n.)
or by stochastic processes below n. — dn.. Thus the clusters with sizes n > g, defined in the
above-described way, may serve as centers for the evolution of the newly evolving phase. A
more precise specification of the value of g will be given somewhat later.

By introducing the dimensionless time scale 7 defined by Eqgs. (3.13) and (3.14), the
Frenkel-Zeldovich equation (3.1) gets the form

of(n,T) _ 9 {w(+) [3f(n,7) N f(n, 1) 8A¢>(n)]}
or on | " on kgT on '

(3.33)

The reduced dimensionless coefficients of aggregation w,(f) are given, now, by (cf. Egs. (3.9),

(3.12), (3.13), (3.14), and (3.15))
wff) = 3aycn”. (3.34)

In the considered first initial stage of the nucleation—growth process the concentration of single
particles is nearly constant and we may consider c in Eq. (3.34) as a time-independent quantity.
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3.3 Nonsteady-State Effects in the Initial Stage of Nucleation 47

Equation (3.33) may be rewritten in a simpler form by introducing new functions

fn,7) =wSH f(n, 1), A® = A® — kpTInwH. (3.35)

We obtain

- on? kgT On on

8f(n,7') +) 82]?(71,7') 1 9Ad df(n, T)
or " +

2 > ~
L AP } (3.36)

kB—T—aHQ f(”a 7')

Possible analytical solutions of this equation will be discussed now for different regions in
cluster-size space.

3.3.1 Approximative Solution in the Range 1 S n < n. — dn,

First we consider the range 1 < n < n. — dn. in cluster-size space. In order to obtain analytic
expressions for the evolution of the cluster-size distribution function to its steady-state shape
f(St) (n) and the characteristic time scale 7, of this process, we proceed in the following way.
We write Eq. (3.36) as

af(an) _ af(n77—> a2f(n’ T) ry
o = at D = BT df (7). (3.37)

The parameters a, b, and d in Eq. (3.37) do not change their sign in the considered interval.
We take them as constants equal, in general, to the average values of the respective quantities,

ie.,
1 9Ad 1 9AD dn
o [+ o (2 92N ANy 3.38
¢ <w” kgT On > <w” kT On > <d7'>> 7 339
b= <w§j>> >0, (3.39)
L~
d=~ — (+)L8A(I) ~ (+)iaA(I)
" kgT On? " kT On?
_ [ P

— <wn 3n4/3>. (3.40)

In order to determine f(n, 7), we first express this function as

Fn,7) = FE9n) + Af(n, 7). (3.41)
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48 3 Kinetics of Nucleation—-Growth Processes: The First Stages

Since f%) (n) is a solution of Eq. (3.37), Af(n,7) is also determined by this equation, i.c.,

OAf(n,T) _aaAf(nJ) +b82Af(n,T) ~

57 = o o2 —dAf(n,T) (3.42)
holds. _
The initial condition for A f(n, 7) reads
Af(n.r=0) = = (F(n) - fln,7 = 0))
(3.43)
x0(n.—on.—n)f(n—1).
Here 6(x) is determined by
1 for >0
(z) = (3.44)
0 for z<0.

Starting with an initial distribution consisting of monomeric particles only, i.e.,

f(n>2,7=0)=0, (3.45)
Af(m 0) in the considered range of cluster sizes is equal (with a minus sign) to the steady-
state cluster-size distribution in the considered part of cluster-size space.
We try to find the solution of Eq. (3.42) in the form

Af(n,7) = p(n,7)exp[—dr + x(n,7)]. (3.46)

Here p(n, 7) is some new unknown function while x (n, 7) = Cy7 4 Can is, by assumption, a
linear function of the variables 7 and n. The constants C; and C5 will be determined in such
a way as to yield a relatively simple equation for the determination of p(n, 7).

A substitution of the ansatz (3.46) into Eq. (3.42) results with

2
() = — % (T n %") (3.47)

into the following partial differential equation for the determination of the unknown function
p(n,7):

op(n, ) _,p(n,7)

or on? (3.48)

The solution of Eq. (3.48), obeying the required initial conditions A f(n, 7 = 0), is given by

an’  (n—n')?

+oo
1 ~ ,
p(an) = \/ﬁ / Af(n , T = 0) exp |:2—b - T] dn’. (3.49)
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3.3 Nonsteady-State Effects in the Initial Stage of Nucleation 49

Indeed, Eqs. (3.46) and (3.49) yield

- 2
Af(n,7) = \/4;? exp {dT - Z—b |:7' + iﬂ } (3.50)
an’  (n—n')? ,
/Af )eXp[Qb_T}dn

Taking into account the relation

\/’W / exp( ) dez=1 (3.51)

immediately the initial condition
lim, Af(n,7) = Af(n,0) (3.52)
is re-established. Therefore, the behavior of the cluster-size distribution function in the initial

stage of the nucleanon—growth process is uniquely determined by Eq. (3.50).
Since A f(n, ) is known now, f(n,7) can be established easily as

fn,7) = f&Y(n) + ! eXp{ —dr — a_2 {7’ + 2_71 } (3.53)
’ Varbr 4b a
oo / "2
X / Af(n',7=0)exp [% - (TL;T:)} dn’.

With Eq. (3.35) we further obtain

f(n T)—f(St)(nH—il exp{—dT—f [T+2—n]}
’ w51+)\/47rb7' 4b a

+oo
) an’  (n—n')?]
X / Af(n',7=0)exp { 2% b dn’. (3.54)

Moreover, by applying Egs. (3.5) and (3.6), Eq. (3.54) may be employed to establish also
an explicit analytic expression for J(n, t) in the considered range of cluster sizes. We have

J(n,7) = —wH exp( Ad(n )> 0 {f(n, 7) exp(M)("))} . (3.55)

on kBT

A detailed explanation of the way this equation can be obtained is given in the course of
derivation of Eq. (3.73). Therefore, here the respective discussion may be omitted.

Finally, we would like to mention that the expressions obtained for f(n,7) and J(n,7)
have to be considered as approximations, only, due to the assumptions made in the derivation
of the respective results. It is believed, however, that the given expressions reflect the basic
properties of both mentioned functions, at least, in a qualitatively correct way.
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50 3 Kinetics of Nucleation—-Growth Processes: The First Stages

3.3.2 Time Scale of Establishment of Steady-State Cluster-Size
Distributions in the Range 1 < n < n. — dn,

In order to find an estimate for the characteristic time scale of establishment of the steady-state
distribution in the range of cluster sizes 1 < n < n, — dn., we rewrite Eq. (3.50) as

Af(n,T) = exp(—dr) (3.56)

1
Varbr

(n—n'+ ar)?

dn’ .
4bt "

—+oo
X /A]?(n',Tzo)exp —

Equation (3.56) allows us to give an upper estimate of the characteristic time Tr(ell) to reach

steady-state conditions in the range of cluster sizes 1 < n < n. — dn.. For this purpose,
we assume that in the initial state all segregating particles are found in the system in the form

of monomers, only. In this and other most typical cases, Af(n’,0) is a strongly decreasing
function of n’ and Eq. (3.56) gets the form

(n+

+o0o
~ 2 ~
Af(n, 1) %} / Af(n/,7=0)dn'. (3.57)

1
exp] —dr —
VArbr P { 4

The characteristic time scale Tr(ell>

for the establishment of the steady-state cluster-size dis-
tribution in the considered range of cluster sizes is determined by A f(n, 7) o< exp(—7/ Tr(ell))).

From Eq. (3.57) we have

1
7)o = (3.58)
d -
T

We may get the upper estimate for this quantity by replacing a — apin, b — bmax and
d — dpin, 1.€., by the respective lowest (min) or highest (max) values of the parameters in the
considered range of cluster sizes. We find

(+)
o+ B (one\ [ wn’(ne)
Amin = w; )(nc)g <n3/3> =2 ((5710) 3 (359)
bmax = w£l+) (nc) 5 dmin = wsl‘f') (nc) (%) 5 (360)
Ne

resulting in
1) ) n‘cl/3 1 (57%)2 2 n[c(4/3)*n] 3.61)
T jats - - @@ = _ = — E——— . .
rel ﬁwﬁfr)(nc) 3 wﬁfr)(nc) 3 acB
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3.3 Nonsteady-State Effects in the Initial Stage of Nucleation 51

3.3.3 Results for the Range n. — dn. Sn S n.+ on,

The analysis can be carried out in the same way in the range of cluster sizes n. — on. < n <
ne + én.. The only difference is that the parameter a in the considered here range is nearly
equal to zero. We obtain thus from Eq. (3.50)

Af(n,T) = ﬁ exp(—dr)

/ Af(n,7=0)exp [ %] dn’. (3.62)

The relaxation time of the distribution to the steady state is now given by

(2) ~ ]. ~ 3 né/S ~ 1 ((Sn )2 _ n[c(4/3)_’i] (3 63)
Trel = g o7 2\ )  aifie '
min ﬂu}, (nc) Wh, ( C) 1

(el) is of the same order of magnitude as Tr(ell).

A comparison with Eq. (3.61) shows that 7.

As an estimate for the total time Tr(sl) of relaxation to the steady state in the range of cluster

sizes 1 < n < n. + dn. we obtain the result

4/3
7O @) g ne/ ~ 5[ _(ne)?
Trel = Trel re (+) - (+)
Bwn(n;)) 6 (ne)

[(4/3)—r]
5 [ ne
= —. .64
3 ( a1 fc ) (3.64)

For both the considered modes of growth we have thus (in real-time scale; cf. Egs. (3.13) and
(3.14))

2
g( 73 ﬂl‘ng( ) (L) kinetically limited growth
ty = (3.65)
2 2 3
2 (%) (EAJ%) diffusion-limited growth.
S

The functions f(n,7) and J(n,T) are given by Egs. (3.54) and (3.55), again, where the pa-
rameter a has to be set equal to zero.

To complete the analysis of the behavior of the cluster-size distribution function in the
region of cluster-size space 1 < n < n. + Jdn,, the steady-state cluster-size distribution
function f*)(n) and the steady-state flux J(n) have to be determined. This task will be
carried out in the next subsection.

3.3.4 Steady-State Nucleation Rate and Steady-State Cluster-Size
Distribution in the Range 1 S n < n. + dn,

Assuming that a steady state has been established in the system in the range of cluster sizes
1 < n < ne+ dng, the cluster-size distribution and the flux in cluster-size space become
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52 3 Kinetics of Nucleation—-Growth Processes: The First Stages

independent of time. Applying the dimensionless time scale 7, again, both quantities are
generally determined by
of(n,7) _ _9J(n,7)

or on (3.66)

of(n,7)  f(n,7) 0AD(n)
— ()
J(n,7) = —wi" { o + T on } (3.67)

Once J(n,7) = J is a constant, the cluster-size distribution in the considered region does not
depend on time (cf. Eq. (3.66)).

For the determination of J and of the steady-state cluster-size distribution function
f (st) (n) in the considered range of n-values, we introduce, in addition, another so far un-
known function ¥(n, 7) via

fn,7) =¥ (n,7)exp ( A]:I;(;L)) . (3.68)

Taking into account the relation A®(n — 0) = 0 we have

f, 7)o = ¥(n,7)|,_0=c (3.69)

A substitution of the ansatz (3.68) into Eq. (3.67) yields

oY (n, 1) Ad(n)
— ) (2 T _
J(n,7) = —wy, ( o >exp( k:BT) (3.70)
or
o¥(n,7)  J(n,7) Ad(n)
L < e > (3.71)

Integration of Eq. (3.71) with respect to n in the range from n to co leads to

o J(n', 7) exp (M(”/>> »

kgT

U(n,7) = (3.72)

(+)
w, ,
n n

With Eq. (3.68) we get (cf. also [131])

, Ad(n')
oo J(n',T)exp ( )
f(n,7) =exp < kT ) / wﬁj) dn'. (3.73)

n

This equation can be reversed to express J(n, t) via f(n, t). As aresult immediately Eq. (3.55)
is obtained.
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3.3 Nonsteady-State Effects in the Initial Stage of Nucleation 53

After a time interval 7 > Trel (cf. Eq. (3.64)), the flux in the range 1 < n < n. + dn. of
cluster-size space becomes a constant. In this case we have instead of Eq. (3.73)

(A(I)( )
(st) _ _ /
¥ (n) = Jexp ( T ) / wfj) dn'. (3.74)
Taking into account, in addition, Eq. (3.69) we find
/
0 exp ( k <; >)
=J / B dn/ (3.75)
and
J= ¢ (3.76)
o - Ad(n') ’ '
exp T /
— dn
w,
0 n

The function exp[A®(n)/(kpT)] has a sharp maximum in the vicinity of n = n. and
one obtains, in a good approximation, the following expression for the steady-state nucleation
rate:

Ad(n,
J= cw(+)(nc)'f(z) exp (—%) , (3.77)
1 AP
=\ == . 3.78
T(Z) 2k T ( N2 n_nc> ( )
In the derivation of the above-given equations, A®(n) was expanded into a Taylor series
(+)

including second-order terms. Moreover, wy, * was set equal to the respective value atn = n..
T(Z) is the so-called Zeldovich factor [357].
With Eq. (3.27) we obtain for both considered modes of growth

3 Ad(n,)

= el (r—(2/3)] _2x\Ute) 7

J <27T6>oqc nt ex ( TaT ) (3.79)
Equations (3.74) and (3.75) immediately yield
Ad(n)\ [E(n,o0)

Y (n) = - ’ 3.80

ey = e (5000 ) S0 (350)
P <A1:I) (T ))

= = __\ "B~ J !
Z(a,b) = / e dn’. (3.81)

’
a n
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54 3 Kinetics of Nucleation—-Growth Processes: The First Stages

With the same approximations as in the derivation of Eq. (3.77) (Taylor expansion of A®,

Uh(;r) = (H (n.)) one gets in a good approximation

FE9(n) = (g) exp < Akq;(;)) erfe {Ti)v/m(n —nc)} . (3.82)

The function erfc(§) is connected with the error function erf(§) by the relation erfc(§)=1—erf(§).
We have

1
erf(§ %/ dz exp(— (3.83)
0
erfc(¢ / z exp(—z). (3.84)
§

Taking into account Eqs. (3.23) and (3.78), Eq. (3.82) may be rewritten in the form (cf. also
[28,329])

Fo9(n) = <2) exp ( A;:;”) erfc {%} . (3.85)

Note that in the limit n. — oo, Frenkel’s expression for heterophase fluctuations, Eq. (2.15),
is retained in this equation as a special case.

In this way, the determination of the characteristics of the nucleation—growth process in
the range 1 < n < n. + dn, is completed.

3.4 Flux and Cluster Distributions in the Range of
Supercritical Cluster Sizes

For the subsequent analysis, in addition to Eq. (3.1), a similar partial differential equation
determining the change of the flux J(n, ¢) with time and number of particles in a cluster n is
required. Once the flux J(n, 7) is known, the evolution of the cluster-size distribution can be
determined via Eq. (3.73).

By taking the derivative of Eq. (3.67) with respect to dimensionless time, we get with
Eq. (3.66)

aJ(n,1) (+){82J(TL,T) [ 1 8A<I>(n)] <8J(n,7)>}
or Wn 2 | kaT on on : (3.86)

According to Egs. (3.21) and (3.77) the nucleation rate decreases rapidly with a decrease of
the supersaturation. Therefore, in the transient stage to a steady state (for 0 < n < n. + dn.)
and some additional time interval, where intensive nucleation proceeds, the supersaturation,
i.e., the concentration, can be considered as nearly time independent. This result implies, in

particular, that for the description of nucleation w%ﬂ in Eq. (3.67) can be taken as a constant
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3.4 Flux and Size Distribution of Supercritical Clusters 55

(cf. also [298]). For this reason, the term containing the derivative of w,(fr ) with respect to

time is omitted in Eq. (3.86).
As in the analysis of the cluster-size distribution in the range n < n., we will use different
approximations of Eq. (3.86) appropriate for the respective range of cluster sizes.

3.4.1 Results in the Range n. S n < 8n,

Taking into account Eq. (3.26) we obtain, by a Taylor expansion of the term in the square
brackets in Eq. (3.26) in the vicinity of n = n., the following result:

. 1 0AD 1 1] o (n—ne)
et = [~ | =

c

(3.87)

It can be easily verified that in the considered region n. < n < 8n, the Taylor expansion
gives a quite correct fit of the difference in the square brackets. Indeed, we may write

BRI [ (1/3)] 2352 n "
n [nl/B - n;lj/3:| =TNe Z r(1-7), == (n—c> . (3.88)
Moreover, the relation
A N 24+r+1 -1
z(l—2)=—(r—1)= — = —— — 3.89
( ) ( )x+(1/x)+1 T+ (1/z)+1 (3.89)
holds. We find
k| 1 1] (n—n ,
" [nl/a - n(lj/s} BENCER: Az), (3.90)
~ 3
AZ) = (3.91)

2286 [T+ (1/2) + 1]
In the considered range n. < n < 8n, (or 1 < Z < 2) the factor A(Z) has a value of the order
of 1.

For the analysis of the behavior of the distribution and the flux in the region considered
now, the concentration c is considered, again, as a constant. Therefore, we may introduce a
modified reduced time scale 7 via

7= (a10)T. (3-92)

In the new time scale, the value 7 = 0 refers to the moment of time, when steady-state
conditions in the range 1 < n < n. + dn. have been established.
Moreover, for the analysis in the region considered now, the replacement

9?J(n,T) 9?J(n,T)
(H)Z T\ 1) TN
Wn on? - on?

is made. This replacement is quite correct near n = n.. For larger values of n, this term loses
its importance [304]. Therefore, the respective substitution can be considered as a satisfactory

wi (ne) (3.93)
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56 3 Kinetics of Nucleation—-Growth Processes: The First Stages

approximation in the whole considered range of cluster sizes n. < n < 8n, (and also even
for n > 8n,).
With the above approximations, using Eq. (3.34), we get from Eq. (3.86)

3J(n,?) - [k—(4/3)] 3J(n,?) K 32J(n,?)

Moreover, similar to the previous approach in the analysis of the Frenkel-Zeldovich equation,
we set

a= ﬁn[c’““*(‘*/?’)], b= 3ny, T="N—Ne. (3.95)
Equations (3.94) and (3.95) yield
A A N 2 A~
0J(x,7) _amaJ(x,T) n b@ J(QT,T).

(3.96)

ot ox 02

In order to find the solution of this equation, we introduce new variables p(7) and X (z, 7).
Provided X and p are chosen as

~ R e 1 o
X = xzexp(—ar) , p(T) = % [1 — exp(—2a7)], (3.97)

Eq. (3.96) gets the simpler form

0J(X,p) _30*J(X.7)
e (3.98)

Hereby the new variables fulfill the conditions

PF=0)=0, x(&=07=0)=0. (3.99)

For 7 = 0, by assumption, the relations J(n = n.,7 = 0) = J(z = 0,7 =0) = J(X =
0,p = 0) = J = constant have to be fulfilled. Moreover, the condition J(X > 0,p=0) =0
holds. We have to find, therefore, a solution of Eq. (3.98) obeying the above-given initial and
boundary conditions.

The appropriate solution of Eq. (3.96) can be written in the form

“+o0
~ 1 o o~ X—X)?] -
J(X,p) = —F—= /J(x,pZO)exp {(X Af) }dx’- (3.100)
A 4AThp o 4bp

It is easily verified that this solution fulfills the initial conditions

lim J(X,p) = J(X,0). (3.101)

When p = 0 the flux is zero for ¥ > 0 and equal to the constant value J for ¥ < 0.
Taking into account this dependence and returning to the original variables, we find after
some straightforward transformations

J(n,7) = J(n,) erfc [E(?)(n - n)} e < n < 8ne, (3.102)
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3.4 Flux and Size Distribution of Supercritical Clusters 57

£(7) = exp(—a7) . (3.103)

\/ 21— exp(-27)

The evolution of the cluster-size distribution function with time is given by Eq. (3.73), again.
For7T — 0, { tends to infinity and the flux is equal to zero. The approach to the steady state
is governed by the relaxation of f to its steady-state value f = 0. The respective relaxation

~(1II) .
time Trel

is given by

((4/3)—K]
1 Ne
- = - 3.104
a I6] ( )

or (in terms of the time scale 7, cf. Egs. (3.13), (3.14), and (3.92))

A(II)
Trel

[(4/3)*f€] 4/3
3ne
= 3.105
alcﬁ ﬁw(+)( ) ( )

A0 _

Trel

A comparison with Eq. (3.64) proves that the typical relaxation time is of the same order of

magnitude as r(jl) , the time scale of the approach of steady-state conditions in the range of
an .
t

cluster sizes 1 < n < n, + 0n.. Inreal time ¢

factor 5/3 has to be replaced by 1.
After the time 7y.¢) = r(el) + T(eH) steady-state conditions are established thus in the whole
range of cluster sizes 1 < n < 8n,.. The flux equals J = J(n.) (Eq. (3.79)) while the
steady-state cluster-size distribution is given by Egs. (3.80) and (3.85), respectively.

The number of particles, segregated in clusters with sizes n < n.(0), is relatively small.
Therefore, significant changes of the concentration do not occur in the initial stage of the
nucleation—growth process for 7 < 7. Moreover, as will be shown subsequently, the char-
acteristic time scale of steady-state nucleation 7y is large as compared with the time lag in
nucleation 7,.1. Therefore, taking into account variations of the state of the system due to the
further nucleation—growth process at times 7] < 7 < Ty, the characteristic time scales of
variation of the state of the ambient phase are always large as compared with 7,¢;. Therefore,
as far as intensive nucleation processes take place in the system, the flux and the cluster-size
distribution in the range of cluster sizes 1 < n < 8n,. are given by the steady-state expressions
derived earlier with slowly varying values of the concentration c. By the mentioned reasons
we will identify the parameter g, introduced at the beginning of Section 3.3, with g = 8n,.

is given by Eq. (3.65), again, where the

3.4.2 Results in the Range n 2 8n,

For an adequate description of the flux in cluster-size space and the evolution of the cluster-
size distribution function in the range n > g = 8n, the variation of J(n.) with time has
to be taken into account from the very beginning. Otherwise stationary values of the flux
and steady-state cluster-size distributions would develop up to n — oo. Such a result is
meaningless from a physical point of view. In particular, it would require the existence of an
infinite number of segregating particles in the system. The change of the nucleation rate is due
to the decrease of the concentration of single particles from the initial value ¢(t = 0) = ¢
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58 3 Kinetics of Nucleation—-Growth Processes: The First Stages

to the actual value c(¢). Such changes of the concentration of the single particles affect the
nucleation rate mainly via its influence on the work of critical cluster formation A®(n,.).

The work of critical cluster formation at some arbitrary moment of time A®(n.) (corre-
sponding to a critical cluster size n. and a concentration of single particles c or the activity
¢(c)) may be expressed through the respective expression in the initial state A®[n.(0)] (at
a concentration ¢ = ¢ or an activity ¢(co) referring to a critical cluster size n.(0)). In the
subsequent analysis, we start with the identity

Ad(n,) _ A®[nc(0)] Ad(n.)
kBT kBT A(I)[TLC(OH '

(3.106)

According to Eq. (3.21), the work of critical cluster formation depends on the actual value of
concentration or activity mainly via its dependence on Ay. It is assumed here that, for the
considered relatively small variations of the concentration in the initial stages of the trans-
formation, the dependence of the specific interfacial energy on concentration is negligible in
comparison with its effect on the variations of Au. Since the considered variations of Ay are
also small, we may write

OAD(n,)

A®(n.) = Ad®[n.(0)] + O

[Apu(e) — Ap(co)] - (3.107)

CcC=Co

Employing Egs. (3.21), (3.24), (3.25), and (3.26), we have

A®(ne) _ AP[n(0)] (Ap(c) — Ap(co))
[ T n.(0) { T ] . (3.108)
With the notation
_ [(Ap(eo) — Apulc))
= kT ] (3.109)
and Eq. (3.77) we obtain
J(ne) = J[ne(0)] exp [-nc(0)p] . (3.110)

If we express the difference of the chemical potential of the particles in both phases via
the respective expressions for real or perfect solutions (cf. Eqgs. (3.30) and (3.32)), we may
write, in particular,

o= () = () s

for real solutions and

p=—In (é) = (1—£> (3.112)

for perfect ones.
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3.4 Flux and Size Distribution of Supercritical Clusters 59

The time of active nucleation T we define via

ne(0)p(Tn) = 1. (3.113)

This definition corresponds to a decrease of the steady-state nucleation rate by a factor e ! in

comparison with its initial value. It follows as a consequence that during the time of active
nucleation 7 < Ty the inequality ¢ < 1 holds.

For a determination of the flux in the considered range of cluster sizes we start with
Eq. (3.86), again. Hereby we go over from the variable n to the radius of the aggregates,
R. Moreover, the radius will be expressed in units of as (cf. Eq. (3.10)) as » = R/as.
Employing, again, the time scale 7 (cf. Eq. (3.92)) we find

aJ(r,7) -2 1 1\aJ(r7) n r3=4 192 ) (r, T) ~20J(r,7)
- or 3 or? r  or

oT roor,

(3.114)

The initial moment 7 = 0 in the analysis is to be identified, now, with a moment of time

T = Trel = Tr(ell) + Tr(g ) after the initiation of the nucleation—growth process.
The further derivations have to be carried out for kinetically limited and diffusion-limited

nucleation—growth in somewhat different but similar ways.

3.4.2.1 Kinetically Limited (or Ballistic) Growth

For kinetically limited growth the parameter x in the expression for w7(l+) equals k = 2/3 (cf.

Eq. (3.13)). Moreover, for the considered range of cluster sizes the inequality n > n, holds,
generally, and we may write in a good approximation

0J(r7)  BOJr7F)  1 PJ(r7)
or r. Or +3r§ or? (3.115)

For the subsequent analysis, we introduce temporarily a new size variable 7* as
F=r—rg, Ty = V/8n. = 2n}? = 2r.. (3.116)
Equation (3.115) then reads

0IF7) _ BOIFF) 1 PJF)
7 r. oF 32 om G117

This equation has to be solved by applying the boundary conditions

J(F = 0,7) = J[ne(0)] exp[-nc(0) (7)) (3.118)
We try to find the solution of Eq. (3.117) with the ansatz

J(7,7) = p(7,7T) exp(axr) exp(—gk?). (3.119)
If the parameters a; and Zk are chosen as

~_3p w362

Sre b= (3.120)
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60 3 Kinetics of Nucleation—-Growth Processes: The First Stages

the differential equation for p(7, 7) gets the form

p(F,7) _ 0D, 7) (5 _ 1
— = b . 3.121
o7 a0 B T G12D
Note that the parameters ay, Ek, and b,(;) obey the relation
by, = b3, (3.122)

We have to find the solution of Eq. (3.121) which fulfills the boundary condition (cf. Egs.
(3.118) and (3.119))

5(0,7) = J(0,7) exp (E,ﬁ) . (3.123)

This solution is given by

?2

~ 4 ¥~ oy
PR 7) = —— [ 5(0,7) e (T-7) d7'. (3.124)
() (7 —7)3/2
47rbk 0

Indeed, it can be verified easily that Eq. (3.124) is a solution of Eq. (3.121). Moreover, from
Eq. (3.124) we have

[ :
exp | ————
w7 —7)
hmp T 7) lim / i ar’ 3 5. (3.125)
7—0 ( ) 7‘~>O \/F (7‘ — 7'/)‘3/2
By introducing a new variable of integration z via
pm—— ' dz= " a7 (3.126)
a7 —7) 21/4b\7) (7 — 77)3/2
we find (cf. Egs. (3.83) and (3.84))
lim (7, 7) = p(0,7) lim 2 / exp (—2%) dz (3.127)
7—0 ’ ’ 7—0 ﬁ '
7/1/4607
or
lim p(r 7) =p(0,7). (3.128)

7—0
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3.4 Flux and Size Distribution of Supercritical Clusters 61

This way, it is shown that the function given by Eq. (3.124) fulfills all requirements.
According to Egs. (3.119) and (3.124), the general solution of Eq. (3.117) is given by

J(0,7)exp [~By(7 — 7)]

JF7) = — exp(@?) /

I
x )7 - 7) a5 (3.129)
(5_\_5_\/)3/2 : :

By choosing, again, the variable z as the variable of integration we have (cf. Eq. (3.126))

o

~ gk?Z 2
J(7,7) = —= exp(axr) / J(0,7") exp l— —2%| dz (3.130)
) 9 (*) 2 )
\/_ “(F=) 4b; "z

=0 = (3.131)
V47
With Eq. (3.122) we may write

o T\ ?
L (Z _ ‘W") (3.132)
4b§:) 2 2z

and Eq. (3.130) gets the form

2
J (7 / J(0,7") exp[ G—?) ]dz. (3.133)

z(?’ 0)

The exponential function in Eq. (3.133) has a sharp maximum in the vicinity of the value
z = zp. This particular value of z is determined by

~ N\ 2
ag’r
h(z = z) = (z—%)

In order to evaluate the integral (3.133), we replace the function h(z) (defined by
Eq. (3.134)) by its Taylor expansion in the vicinity of z = z5. We get

= O, Z% = —. (3.134)

Z=Z0

h(z) = 4(z — 2)>. (3.135)

Moreover, the variable 77 is connected with z by (cf. Eq. (3.126))

72
= (3.136)
4b,(: 22
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62 3 Kinetics of Nucleation—-Growth Processes: The First Stages

Since only values of J(0,7’) in the vicinity of z = 2z contribute to the integral in
Eq. (3.133), we replace in Eq. (3.136) the variable z by zy,. We have then

FeFo— =7 =R (77). (3.137)
26"y, B

This way, we may write with Eq. (3.110)

Jr7) = Jne(0)]exp{=nc(0)¢ [7o(7, 7)]} (3.138)
X % / exp [—4 (z — 20)2} dz.
2(7/=0)

Finally, with £ = 2(z — z), Eq. (3.138) yields

J(ﬁ?):J[ncm)]exp{—ncw)m(m)]}% / exp (—€2) de, (3.139)

£(7/=0)

€7 = 0) =227 = 0) — 2] = |22 (ﬁ— ,/f—j . (3.140)

The flux in cluster-size space has, according to Eq. (3.139), properties of a kink solution.
It can be approximated by

J(7,7) = J[ne(0)] exp {=nc(0)¢ [70(7, 7)]} O (Fmax — T)- (3.141)

The theta function §(z) is defined by Eq. (3.44), again.
The largest clusters formed at time 7 have a size Tiay. Its value is determined by
&(7=0)=0o0r
B
Tmax = —T-
Te

(3.142)

Equation (3.137) shows that this value corresponds to 7o = 0, i.e., ©(7y) = 0.

It follows that steady-state conditions are established at a cluster size 7 after a time inter-
val 7. Going over to the time scale 7 (cf. Eq. (3.92)) and the size variable r (cf. Eq. (3.116))
we obtain the following expression for the cluster size-dependent time lag 7y¢1 (7 > 27(0)):

Teel(1 > 2r0) = Trel(r < 210) + O:Zﬁ (r — 2r.). (3.143)

Here it is taken into account that 7 = 0 corresponds, by definition, to the moment of time
when steady-state conditions have been established in the range of cluster sizes n < 8n,. (or
r < 2r.). Due to such definition, in the transformation to the time scale 7 in Eq. (3.143),
Trel (7 < 27), the time interval for the establishment of steady-state conditions in the range of
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3.4 Flux and Size Distribution of Supercritical Clusters 63

cluster sizes n < 8n, (or r < 2r,) is added. This quantity is given by (cf. Egs. (3.34), (3.64),
and (3.105))

8ne
Trel(r < 2r,) = = . (3.144)
e ng‘r)(nc) 3aicf

For kinetically limited growth x = 2/3 holds. Equations (3.143) and (3.144) then yield

Trel (17> 27¢) = Tret (1 < 217) {1 + Z [(27; ) — 1} } ) (3.145)

43 g l4/3)=r]

Once the flux J(7,7) (or J(n, 7)) is determined, the cluster-size distribution function can
be obtained based on Eq. (3.73). We have, in general,

AD(n)

oo J(n', ) exp
Afl)(n) ( kBT ) ’
f(n,7) = exp (— T )/ e dn’. (3.146)

n

In order to get an analytical expression for f(n, 7) in the considered range of cluster sizes, we

realize that J(n, 7), wiP, and v(n, T) are slowly varying functions of n in comparison with

the term exp(A®(n)/(kpT)). By introducing the function 7 via

Ad(n') 1 0A®(n) .,
= - dp=——+——--+=d 3.147
" kpT TS kg o U (3.147)
we get
A
f(n,7) = —exp (— k:B(JtL)) (3.148)
J(n', 1)
X ) 1 0Ad(n) exp(—n) dn.
—A®(n)/kpT |Wy —kBT “on'
Taking into account the remarks made above and Eqs. (3.7) and (3.28), we have, finally,
J(n,T) dn  3aqBcn?/3
=~ _— > . .
f(n,7) i’ ar e "2 8n. (3.149)
dr

J(n,T) is given here either by Eq. (3.139) or by Eq. (3.141).

3.4.2.2 Diffusion-Limited Growth

The method outlined in detail for kinetically limited growth can be applied with minor modi-
fications also to diffusion limited aggregation processes. We start with Eq. (3.114), again, and
set the parameter  equal to k = 1/3 (cf. Eq. (3.14)), now. We obtain with r > r,

aJ(r,7) B Jr7) 1 (62J(r7?) 2 8J(rﬁ)>.

7 Crer Or 32 8T2 r or

(3.150)

ot rer Or 3r2
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64 3 Kinetics of Nucleation—-Growth Processes: The First Stages

Taking into account the identity

0 [10J 10J 10%J
B et IR B 151
or {r 87"] r2 Or  ror?’ (3-15D)
we first have
AJ(r,T) B J(r,T) 1 [0 (10J(r,7T) 10J(r,7T)
=— — == R — . 152
or rer Or + 3r2 |or \r Or r2  Or (3.152)
With the new variable
y=r? (3.153)
Eq. (3.152) gets the form
A~ ~ 2 o~
8J(%T) _ 289J(y,7) i 40 J(Z/J)' (3.154)
or re Oy 3r. Oy
Similar to the previous case, we set
gj:y—yg:rz—rg, rg = VB8ne = 2nl/3 = 2r.. (3.155)
With this notation, Eq. (3.154) reads
~ o~ 2 ~
0J(4:7) _ _260J(,7) 4 O°J(@GT) (3.156)

or re Oy 3r. 02

In this way, the partial differential equation for J (¥, 7) is of the same form as Eq. (3.117)
for J(7, 7). As a consequence, we can apply the same methods of solution with similar results.
Hereby the following replacements have to be made in the final expressions:

3
F=y =7 =r"—r, ak:sadziﬁ, (3.157)
35 () (%)
e — = . .1
bk — bd 17, s bk — bd 3. (3.158)

Note that the relation by = b( e 2 is fulfilled, again.

A similar relation was used 1n the analysis of kinetically limited nucleation—growth pro-
cesses. We have, thus (cf. Eqgs. (3.137), (3.139), (3.140), (3.141), (3.142), (3.148), and
(3.149))

~ ~2
~/ ~ y P T TC AN AN
=7 =7 =7(7,7), (3.159)
ng*)ad 20
J(7,7) = Jn:(0)] exp {—n.(0)¢ [T0(F, 7)]} —= \/_ / eXp ) d¢, (3.160)
£(7/=0)
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3.5 Time Interval for Steady-State Nucleation 65

M aqy 3272 2067
(=0 —2] L —\/@ =2 (vE o 2T (3.161)
/4b((i*)7,: 2 4T Te

J(7,7) = J[nc(0)] exp {—nc(0)¢ [7o(7, 7)]} 0(Fmax — 7, (3.162)
Toax = e (3.163)
) = <o 1 S| i 1 3.164
Trel(r > 21¢) = Tyl (1 < 2r.) s 1+ i|\ar) ~ , (3.164)
- Jn,7) dn 3oy fent/?
f(n,7)= any = 17117 . n>8n.. (3.165)
dr

This way the respective analysis for the case of diffusion-limited nucleation—growth processes
for the considered region in cluster-size space is also completed.

3.5 Time Interval for Steady-State Nucleation

Based on the results concerning the evolution of the flux and the cluster-size distribution func-
tion in the first stages of the nucleation—growth process, an estimate of the time interval for
steady-state nucleation is developed, now. This derivation is based on the mass-balance equa-
tion. It may be written in the form

A():A—i—/f(n,T)ndn, (3.166)
0
Ag =co— c,(azc), A=c— cgzo). (3.167)

Here c is the initial and c the actual concentration of segregating particles in the ambient
phase (A(T = 0) = Ay, A(T7 — o0) — 0).
A derivation of Eq. (3.166) with respect to time yields

dA(r) :—/ 0f(n7) ndn:/ 0T T)\ L (3.168)
dr or on
0 0
and after partial integration
dal) _ _ / J(n, ) dn. (3.169)
dr
0
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66 3 Kinetics of Nucleation—-Growth Processes: The First Stages

For the range of cluster sizes n < g = 8n. we assume that steady-state conditions are
fulfilled (J(n,7) = J(A) =const), while for n > ¢ the flux has to be considered, in general,
as a function of n and 7. It follows

dﬁy) = */J(A)d”*/n}(”ﬁ)dn: *J(A)Q*/J(ﬂ,’l’) dn. (3.170)
0 g g

The first term on the right-hand side of Eq. (3.170) accounts for the influence of the newly
formed clusters of size g on the supersaturation A while the second term reflects the influence
of the clusters with sizes n > ¢. Both terms on the right-hand side of Eq. (3.170) contribute
to the change in the supersaturation. Therefore, as a next step the second term in Eq. (3.170)
has to be evaluated. The respective derivations differ to some extent, again, for diffusion and
kinetically limited nucleation—growth processes. They have to be carried out separately.

3.5.1 Kinetically Limited Growth

Since for a given moment of time 7 the flux is different from zero only in the range of cluster
sizes n < Nmax (cf. Eq. (3.142)), we may write

oo Mmax
/J (n,7)dn = / J(n,T)dn. (3.171)
g g

In order to evaluate this integral, we realize that r can be expressed generally as (cf.
Eqgs. (3.92), (3.116), and (3.137))

Baico

Tc

r=rg+ EEO [ () (3.172)

In terms of the number of particles n in the cluster, we thus have

o { 1/3 Baicy B }3
n=<g/’°+——[r—70(n,7)] p . (3.173)

Te
The characteristic curve 7o(n, 7) of the growth equation fulfills hereby the conditions

T for n=g
ro(n, ) = 3.174)
0 for T = Nmax-

In addition, according to Eq. (3.139) or (3.141), the flux J(n, 7) depends on the variables n
and 7 only via 79(n, 7). With Egs. (3.171), (3.173), and (3.174), we obtain

T

00 0
/J(n, /JTO n,T) —dTO /J[To(n,T)]MdTO. (3.175)
g

dr
0
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3.5 Time Interval for Steady-State Nucleation 67

Here [dn(T — 79)/d7] = v(n, T — 79) is the growth rate of a cluster of size n at a moment of
time (7 — 79).
A substitution of Eq. (3.175) into Eq. (3.170) yields

dp(r) _ J()g . [ [J(r)] dnlr — 7o)
dr ¢ +/ [ co } dr dro, (3.176)
p=1- —cct)- (3.177)
0

Here J(7) is given by J(7) = J(0) exp[—n.(0)¢(7)] (cf. Eq. (3.118)).
A partial integration of the second term on the right-hand side of Eq. (3.176) results in

dg(r) _ J(0)g Barco \*
D 1+2n3/37 . (3.178)

Small terms of the order [.J(0)/co]? are omitted in Eq. (3.178). The solution of Eq. (3.178)
with the initial condition $(0) = 0 gives

N 4J(0)nz/3 Barey \*

The time interval of steady-state nucleation is determined by ¢(7n)n.(0) = 1 (cf. Egs.
(3.109)—(3.113)). With this expression and Eq. (3.179) we obtain

_ ~ 10/3 4
(P(TN) (TN)nc _ (,0(7'1\/‘) _ 4‘](0)77’6 (504100 )

N
o(Tn) o(Tn) B on2/3

(3.180)

Here it was employed that the prefactor to the brackets in Eq. (3.179) is a small quantity.
Moreover, as it is evident from a comparison of Egs. (3.112) and (3.176), for perfect
solutions ¢ and ¢ coincide. Therefore, we may introduce a parameter of nonideality as

ple(rn)]
ple(rn)]

Here ¢(7n) is the value of the concentration at the moment of time 7 = 7. It is determined
by Eq. (3.113). For perfect solutions, the parameter of nonideality {2 equals 1.
Equations (3.180) and (3.181) yield

1/4 1/4
(k) Co 40
= Y B — . 3.182
N (J(T = 0)> (ng/?’ﬂ?’(alco)?’) ( )

The superscript (k) in Eq. (3.182) specifies that the respective results hold for kinetically
limited nucleation—growth processes. In real time, this relation reads

2 Ol1/4
(k) § amQ EA‘I’(HC)
& 2 wz/gw},{scom/%é/GD(*) exp (4 kT ) (3.183)

0= (3.181)

1%
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68 3 Kinetics of Nucleation—-Growth Processes: The First Stages

3.5.2 Diffusion-Limited Growth

Instead of Eq. (3.173), we have in the case of diffusion-limited nucleation—growth processes
the relation (cf. Egs. (3.92), (3.157), and (3.159))

3/2
n= {92/3+ 252471% [T—To(n,T)]} : (3.184)

The characteristic curve 7o (n, 7) of the growth equation obeys condition (3.174), again. More-
over, the dependence @ = (7) is also given by Eq. (3.176). The solution of this equation for
diffusion-limited growth reads

2 5/2
o(r) = 327 (O)me l(l + MT) - 11 . (3.185)

560410(2) 2N

The time interval of steady-state nucleation for diffusion-limited nucleation—growth processes
TJ(\,fl ) is then obtained as

@) _ o \"° 2502\ (3.186)
N\ J(r=0) 32n.3%(a1cp)? ' '

In real time, the respective expression reads

20252119 Ad(n,
Y =14t ( (m)>' (3.187)

N ’ (wsco)ﬁ4/5D = g kBT
Since the order of the nonideality parameter is expected not to differ considerably from unity,
QY4 and Q2/5 can be set equal to 1 in a good approximation. For this reason, nonideality

effects enter the expression for the time of steady-state nucleation mainly via the work of
critical cluster formation, A®.

3.5.3 Nonsteady-State Time Lag and the Time Scale of Steady-State
Nucleation

According to Egs. (3.13), (3.14), and (3.144), the time required to establish steady-state con-
ditions in the range of cluster sizes n < 8n, is given by

a2 n?/3 L o
3 Wg/gwgng(*)coﬁ kinetically limited growth
trer(n < 8ng) & (3.188)
2
8 agn. . L
3wsDcoB diffusion-limited growth.

With Egs. (3.183) and (3.187), we obtain the following results for the ratio (¢n /trel):

(k) 1/4.31/8
N~ Qs 1 Ad(n,)
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3.6  Further Basic Characteristics of Nucleation—-Growth Processes 69

(d) 2/531/5
N o 00 2A®(n.)
rel c

In both the cases, the time interval of steady-state nucleation exceeds the time lag considerably.

Once the characteristic time scales for steady-state nucleation are determined, a number of
additional basic characteristics of the nucleation—growth process may be derived in a straight-
forward way.

3.6 Further Basic Characteristics of Nucleation—-Growth
Processes

3.6.1 Number of Clusters Formed by Nucleation

The maximum number, Ny,,x, of supercritical clusters formed by nucleation processes and
capable to a further deterministic growth may be determined via

N

Nmax:/J(gvT)dT- (3.191)
0

Rewriting this equation in the form

Nunax = /J(g,O) (1 + [J(g’?(g_ é@,@)]) dr (3.192)
0 )
we get
_ 1 T .0) - Tg.7)
Niax = J(g,0)7n |1 - / 75.0) dr. (3.193)
0

Taking into account the relations

J(r) = J(0) exp[—nc(0)p(7)], (3.194)

n:(0)p(7) < ne(0)p(rn) =1, (3.195)
we have

17 T(.0) - J(g,T)} 1 TN[J@,(» ~J(gn)] 2
— ——F————=|dr < — d —. 3.196
™) [ J(g,0) T_TNO J(g,0) T3 ( )

We may formulate, therefore, in a good approximation a very simple estimate for the maxi-
mum number of supercritical clusters capable to a further deterministic growth:

Nmax = J(g,0)7n. (3.197)
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70 3 Kinetics of Nucleation—-Growth Processes: The First Stages

With Egs. (3.182) and (3.186), we have for the both considered modes of growth

1/4
4cpf)
N{EL = J¥%(0) 2/3070 ; (3.198)
ne' "33 (aico)?
(d) 3/5 QSC%Q 1/5
N =J7P0) | c0—7— 3.199
max ( ) (3271053(0[100)‘3) ( )
Substituting J(0) with Egs. (3.13), (3.14), (3.15), (3.77), and (3.78) one gets, finally,
Ql/4 3Ad(n,)
N&) o~ €0 _2 c 3.200
max ni/6ﬂ3/8 exp 1 kT ) ( )
N(d) N 30001/5 ox _§A‘b(nc) (3 201)
max 47’13/563/10 5 kBT ! :

Hereby the quantities n., 3, and A®(n.) are given by (cf. Egs. (3.21), (3.24), (3.25), and
(3.26))

1/3 _ B _8_7" aag
" By T3 (kBT)’ (3202

3
Adlne) _1___ P . (3.203)
kol 2[Ap/(kaT)

As is evident from Egs. (3.200) and (3.201), the number of clusters formed in the system
is determined mainly by the initial concentration of the segregating particles ¢y and the value
of the work of critical cluster formation. It does not depend on the diffusion coefficient D or
D™ In the calculation of the work of critical cluster formation nonideality effects have to be
taken into account, of course. This is the main factor where deviations from ideality enter the
description.

3.6.2 Average Size of the Clusters

The stage of dominating nucleation is followed, in general, by a stage of dominating indepen-
dent growth of the supercritical clusters present in the system [28,230]. Independent growth

means that the supercritical clusters do not influence each other directly but grow at the ex-
pense of the excess monomers and the supersaturation tends to zero [A(t) = (¢— c&;")) — 0].
After this process is finished, the transformation reaches a certain degree of completion
(cf. [28]) and goes over into a third, late, stage of competitive growth denoted usually as
coarsening or Ostwald ripening (cf. Chapter 4 and Lifshitz and Slezov [155], Slezov and
Sagalovich [289]).

In nucleation—growth experiments, the earliest states commonly observed correspond to
the end of the stage of independent growth. Therefore, in the calculation of the average sizes

of the clusters to compare them with experiment one has to take into account the deterministic
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3.6  Further Basic Characteristics of Nucleation—-Growth Processes 71

growth of the supercritical clusters. This growth is stopped after the supersaturation reaches
values near zero (for a more detailed and precise formulation see, e.g., [220,230]).

Since we have already determined the number of clusters, Ny,.x, formed in the course
of nucleation, by a purely thermodynamic argumentation it is possible to give estimates also
of the average size, (R), of the clusters and its dependence on the initial supersaturation.
Approximately, we may write the mass-balance equation for the final state of independent
growth in the form

3
(co — ) = Ninax- (3.204)

This relation is equivalent to

(o0)
3 [ Bwsceq 1 Co B
(R)” = ( o > ( Nmax> chg@) 1] : (3.205)

A substitution of the expressions for Ny« (cf. Egs. (3.200) and (3.201)) into Eq. (3.205)

yields
- 1/3
o S o= &) (ni/op o [(122(0)
s Co Ql/4 b1 kT

for kinetically limited growth

) 1/3
co — céijf) 4n§/563/10 1 AdP(n,)
s % 30175 P\ 5 kBT

for diffusion-limited growth

E
1%

(3.206)

N———

or in a good approximation

s exp (}I A,;I’B(%) ) kinetically limited growth
(R) & (3.207)
ag €xXp <% Ad(n) > diffusion-limited growth.

kT

3.6.3 Time Interval of Independent Growth

For segregation processes in solutions, the deterministic growth of the clusters (in the second
stage of the phase transformation) is limited commonly by diffusion processes of the segregat-
ing component to the newly evolving phase. Neglecting surface effects, we have in this case
(cf. also Egs. (3.12), (3.26), (3.28), and (3.30))

wi"), | = 47RDc, (3.208)
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72 3 Kinetics of Nucleation—-Growth Processes: The First Stages

In <¢(i)>] . (3.209)
eq

In terms of the radius of the clusters this equation reads (cf. Eq. (3.11))

In (%)] . (3.210)
eq

From the mass-balance equation, furthermore we obtain, assuming that all clusters are
nearly of equal sizes,

dn (+) 1 8A@(n)
E = 7wn,n+1 1.7

- 922 _ 4rRD
kT an} mhRDe

dR _ (Dw;)
dt R

¢=co— NR? (4”> . (3.211)

3wy
¢

From this equation, as an estimate for the duration ¢g.owtn Of the stage of independent growth,
we obtain for diffusion limited growth
2
@ o )

N , 3213
growth 2Dw5 o ( )

Substituting into Eq. (3.210) yields

dR  Duw, ArNY 4
Wl (5]

Substituting the mean radius (R), with Eq. (3.207), we thus have

2
(kd) (ls 1 A<I>(nc)
t ~_Js - 3.214
growth = 51, oo P <2 kT ) (3:214)

b

if the nucleation process proceeds by kinetically limited growth, and

2
(dd) CLS 2 Aq)(nc)
¢ _9s z 3215
growth — 9, o XP (5 kpT )’ (3.215)

Il

for diffusion-limited nucleation.
The ratio of independent growth time to that of steady-state nucleation (¢groweh/tn) can
be written as (cf. Egs. (3.183), (3.187), (3.214), and (3.215))

Wi L 7R (D] 1 0 ca16
(B~ 30Ut D PAL kT ) '
(dd)

t 4/5

growth ~, ﬁ (3217)

tE\‘?) B 392/5713/15'

In the case when both nucleation and the stage of independent growth are limited kinetically,
we have instead of Eq. (3.213)

®) am (1)
growth D(*)WSCO .

I

(3.218)
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3.7 Time of Steady-State Nucleation and Induction Time 73

With Egs. (3.183) and (3.207) we arrive at

kk
growin o, 207/°nt/° (3.219)
(B BT '

In all considered cases, tgrowtn Noticeably exceeds . It follows that the time Zcompl,
tcompl =ty +In + tgrowth; (3.220)

required to reach the stage of competitive growth, is determined mainly by the value of growtn -

3.7 Time of Steady-State Nucleation and Induction Time

In the kinetics of phase transformation processes, a less detailed description is widely em-
ployed dealing exclusively with the time evolution of the total mass or volume fraction of the
newly evolving phase [13,49, 129, 191]. In such type of descriptions, this induction period
or latent time of the transformation, till the appearance of the new phase can be observed
experimentally, plays a major role. In order to give a comparison of both approaches, their
advantages and limitations, such a method of description is described here briefly as well.

Assume that the nucleation process proceeds with some given rate J(t') starting with
some moment of time ¢ = 0. The number of supercritical clusters, formed in the time range
t' ¢ + dt’, is then given by

AN (") = J(t')dt". (3.221)
The clusters, once formed, grow and give at time ¢ a contribution dV (¢, t')
AV (t,t") = v(t, t") AN (t) (3.222)

to the total volume V' (¢) of the newly evolving phase. Here v(t,t") denotes the volume of a
cluster at time ¢ is denoted which has been formed originally at time ¢’. It is then commonly
assumed that this quantity is determined mainly by the time of growth ¢ — ¢'.

Denoting further by G the growth rate of the linear dimensions of the aggregates of the
newly evolving phase and by w,, a geometrical shape factor, the cluster volume v(t,t') may
be expressed as

n

t
v(t,t') =w, /GR(t” —t)ydt" § . (3.223)
t/

Here the parameter n specifies the number of independent directions of cluster growth in
space.
Going temporarily over to the variable z = " — ¢/, we obtain

t—t' "
v(t,t') = w, / Gr(z)dz p . (3.224)
0
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74 3 Kinetics of Nucleation—-Growth Processes: The First Stages

We then find immediately
t t—t' "
Vt) = wn / J(t') dt / Gty at" b . (3.225)
0 0
For spherical clusters and three-dimensional phase formation, we have
dR
5 = ~1 = constant, Gr(t) =mt (3.226)

for kinetically limited growth and

dR 7 _ _ Ve
iyt ~o = constant, Gr(t) = i/ (3.227)

for diffusion-limited growth. Assuming, in addition, constancy of the nucleation rate, we
arrive at

V() =Dyt py = o0t 3.228
(t) =Ty Y 1) (3.228)
for kinetically limited growth and
V(t) = Dy Jt(nt+2)/2 Y woya? (3.229)
) n+ 2 2

for diffusion-limited growth.

Remember that the induction time of the transformation is usually defined as follows: it is
the time from the beginning of the nucleation—growth process till the moment when the new
phase is observed first experimentally. Therefore, if we select some special value for the total
amount of the new phase as the lower limit for experimental observation, we then obtain the
following dependences for the induction times:

tk) o g/ () (3.230)
D o J/(nt2) (3.231)
respectively.

The induction times, determined in the sketched way, are characterized by similar depen-
dences from the steady-state nucleation rate as the expressions for the time of steady-state
nucleation, Egs. (3.183) and (3.187), derived here earlier. Note, however, that the induction
times do not coincide, in general, with the times of steady-state nucleation. Their values
depend on the choice of the volume of the newly evolving phase, which is experimentally
measurable. Note that in our approach the length of the interval of time, where steady-state
nucleation with constant rates occurs, is determined as a result of the theory and not taken as an
assumption. Taking into account that the time of steady-state nucleation is, in general, much
shorter as compared with the time of independent growth, the applicability of the assumption
of constancy of the nucleation rate for the estimation of the induction times is, in general,
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3.7 Time of Steady-State Nucleation and Induction Time 75

obviously not correct. It could be correct only if the detectable volumes of the newly evolving
phase are quite small, so that the new phase is observed already in time scales comparable
with the time of steady-state nucleation.

For an accurate description of the time evolution of the total volume of the newly evolving
phase one has to employ first the above method assuming steady-state nucleation. But after the
time of steady-state nucleation has passed, the further growth of the new phase is governed
by the simultaneous independent growth of a nearly constant number of supercritical clus-
ters. Thus, the respective V (t)-dependences may differ from the results derived by assuming
constancy of the nucleation rate. Indeed, for times ¢ > ¢y we have instead of Eq. (3.225)

n

tn t—t'
V(t) =wy / J(t')dt / gt"ydt" » t>ty. (3.232)
0 0

For the case of kinetically limited growth we then obtain with J =const

Vi) = e |- ' " (3.233)
(n+1) t ' '

For large times (¢ /t < 1) this equation is reduced, approximately, to
~ n (k) 4n
V(t) = wpy (Jty ) " (3.234)

Similarly, we have for diffusion- limited growth

L/ 2 @
V(t) = wayy! <m> Jtt2/2 01— (11— % (3.235)

and (in the range t v /t < 1)

V() = wnry’? () 002 (3.236)
Thus, one has to take care in deducing conclusions concerning possible growth mechanisms
from the time dependence of the V' (¢)-curves, only, if it is not established by an independent

analysis whether the condition of constancy of the nucleation rate is fulfilled or not. A more
detailed analysis of related problems can be found in Ref. [115].
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76 3 Kinetics of Nucleation—-Growth Processes: The First Stages

3.8 Formation of a New Phase with a Given Stoichiometric
Composition

3.8.1 The Model

In the description of the kinetics of phase transformations, mainly two kinds of processes are
well studied [51,94,110]

* processes of phase formation when the composition of the ambient and the newly evolv-
ing phases are practically the same;

* segregation processes of one of the components in the ambient phase.

The general case that several components segregate and form a new phase of more or less
arbitrary composition (nucleation in multicomponent systems) is intensively studied as well.
However, due to the enormous theoretical difficulties involved in such a task the problem
remains, at present, far from being satisfactorily solved.

Nevertheless, in the limiting case that the newly evolving phase has a definite stoichio-
metric composition, the situation is less complicated. As will be shown (cf. also Refs.
[293, 304, 309]), in this limiting case of multicomponent nucleation—growth processes, the
kinetic equations can be reduced to the respective expressions valid for nucleation and growth
in one-component systems. However, the effective diffusion coefficients and the supersatura-
tion of the system are expressed in a fairly complicated way via the kinetic and thermodynamic
properties of the different components involved in the phase formation process. The devel-
opment of the respective expressions and their possible application in the further study of the
course of the phase separation is the aim of the present section.

3.8.2 Basic Equations

By assumption, the newly evolving multi-component phase has a definite stoichiometric com-
position. This assumption implies that the aggregates of the new phase consist of n primary
units (or groups of particles). The composition of each of such a group of particles is given by
the stoichiometric coefficients v;.

The process of formation and growth of aggregates of a given stoichiometric composition
can be understood thus as mediated by incorporation or emission of such primary building
units each consisting of v; particles of the different components ¢. The state of the system is
characterized then by the cluster-size distribution function f(n,t), which is the number (or
number density) of clusters containing n primary units. Its evolution is governed by a kinetic
equation of the standard form (Frenkel-Zeldovich equation) [303]

f(n,t) 0 {w(+) {8f(n,t)+f(nvt)8A<I>(n)H.

on  on

= 3.237
nntl on kgT on ( )

The kinetic coefficients wif,z 1 have the meaning of the average number of primary building

units of the new phase incorporated into a cluster of size n per unit time interval. kg is the
Boltzmann constant and 7' the absolute temperature.
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3.8 Formation of a New Phase with a Given Stoichiometric Composition 77

The peculiarities of the considered particular process enter the description via the deter-

mination of the expressions for the work of cluster formation, A®(n), and the coefficients of

aggregation, wiﬁz 41~ For the work of cluster formation, A®(n), we may write

Ad(n) = —n [us - ug")} (3.238)

or, applying the concept of a specific interfacial energy

2/3
3ws
A®(n) = —nAp + an?®/?, o =4mo ( 4w ) = 4roa’. (3.239)
s
The thermodynamic potentials, pts, of the primary building units of the newly evolving
phase are connected with the respective values, ;, of the single components by the following
dependences:

Ap = {/,Ls — ,ugoo)} , ,ugoo) = Z Z/WEOC), (3.240)

p =S"w, = v, (3.241)
i i

Here p5 is the chemical potential of a primary building unit in the ambient phase for the given
values of pressure p, temperature 7' and molar fractions z;, ¢ = 1,2,...,k — 1, of the k

different components, ug‘”) is its value in the case of stable coexistence of both phases at

a planar interface while ,ugn) refers to the respective equilibrium value required for a stable
existence of a cluster of size n in the ambient phase. Similarly, p; are the chemical potentials
of the different components in the ambient phase, while qu(_oo) and uﬁ’“ denote the respective
values for a stable coexistence of both phases at a planar interface or for a cluster of size n.
The primary units in the cluster phase are characterized by their volume w, and radius ag; o
is their surface tension or specific interfacial energy. Since the composition and state of the
newly evolving phase is assumed to be fixed (independent of cluster size), o has to be taken
also as independent of the size of the cluster of the newly evolving phase.

According to Eq. (3.238), the critical cluster size n. and the work of formation of critical

clusters A®(n,) have the same form as for one-component systems, i.e.,
. 2 1 .
nl/® = ﬁ, Ad(n,) = 504113/3. (3.242)

In contrast to the one-component case, the thermodynamic driving force of the transformation
is, however, a function of the chemical potentials p; of the different components. We may
express the chemical potentials of the & different components in the ambient phase via their

activities ¢;, @ = 1,2, ..., k, or the coefficients of activity f; as [97]
pi(p, Ty x1, w2, ok—1) = pio(p, T) + kT Inp;, 0 = fiz;. (3.243)
For perfect solutions (f; = 1,7 = 1,2,..., k), the activities of the different components (;

are equal to the molar fractions x;.
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78 3 Kinetics of Nucleation—-Growth Processes: The First Stages

In terms of the activities of different components, the difference of the chemical potential
Ay may be thus written as

[T

kBT_kBTZ [ (Oo)} | | (3.244)

11 [%(-oo)}

%

The superscript (0o) specifies, again, the respective values of the activities of the different
components for the case of a stable coexistence of both phases near a planar interface.

In order to apply Eq. (3.237), the coefficients of aggregation wfltz 1 have to be specified
as a next step. Generally, they are connected with the macroscopic growth rates, v,,, of an

aggregate of given stoichiometric composition and thermodynamic characteristics via [298]

dn (+) 1 0A®
= —4 =— — =] 24
Un =gy = TR2j, = Wy, nt1 5T \ an (3.245)

Here j, is the density of fluxes of primary building units to the aggregate of the newly evolving
phase near and perpendicular to the surface of the aggregate. Similar to the thermodynamic
properties, the effective kinetic parameters of the primary building units have to be expressed,
now, via the respective characteristics of the different components.

The rate of incorporation of particles of the component 7 through the interface of an ag-
gregate of size n or a radius R,, can be written similar to Eq. (3.245) as [298]

dn; _ 2. (+) 1 OAD
T ATR, ji = =Wy, g1 5T \ o, . (3.246)

Here j; is the density of fluxes of particles of the ith component in the immediate vicinity of
the aggregate of the new phase perpendicular to its surface.

The coefficients of aggregation can be expressed from microscopic considerations (num-
ber of jumps per unit time) in the form [293]

D@\ /4rR? 4
w1 = ( Z )(” am)x wm = (3.247)

a2, Wi

In the above equations, w,, is the average volume a particle of one of the components occupies
in the solid solution, and DES) is the partial diffusion coefficient of the respective component
in the immediate vicinity of the cluster of the newly evolving phase. It may be equal but
generally less than the respective bulk value, D;. Thus, we may replace DES) by D;«; with

a; < 1. The term (Dgs) /a2,) has the meaning of the average frequency of a jump of a particle
of the component 7 into the direction of the aggregate perpendicular to the interface, and a,,
is a measure of the average length for such a jump. The remaining term in Eq. (3.247) gives
the number of particles of the respective component capable to perform such an elementary
process.

www.iran—m L\V‘dLLC(l m

Age Crwdivs 9 Olgils @ yo



3.8 Formation of a New Phase with a Given Stoichiometric Composition 79

Since we consider here the case of formation of a new phase with a given stoichiometric
composition, the aggregation rates of the different components are connected by the con-
straints

Ar R3 2\
n; = yn, n= %% = (i—) . (3.248)
S S

With these relations, Eqgs. (3.245) and (3.246), the rate of change of the number of structural
units 7 may be written as

ATR2 Y " wiji

dn ; Ji

= —_ v = —A7R% [ 2 ). 3.249
de Wg Titn (1/2> ( )

In the above equation, the identities

i J2 Jk

EA N s = Wi 3.250
o v w zl: viw ( )

have been employed. w; is the volume of the component ¢ in the newly evolving phase.
A substitution of the expressions for (j;/v;) (cf. Egs. (3.246) and (3.247)) into the right-
hand side of Eq. (3.249) yields

2/3
v? \dn _ e (w\Y L{,,( .,u(”))} (3.251)
o) @ = o) mer vl |
By taking the sum over all components, we have
dn 3D(§)n2/3 Ws 2/3 1 (n)
@& ah (;) FoT 2= s = (3:252)

or with Eqgs. (3.238)—(3.240)

dn _ _3D((;f)n2/3 ws 25 OAD(n) (3.253)
dt a2, W, kgT on ' '
Déff) denotes the effective diffusion coefficient; it is given according to the above derivations
by

. 1 1
DY - - . (3.254)

vi v;
Z Z (%‘Diai)

i xiDz(s) i

Going over from the partial diffusion coefficients, D;, to the values DZ(O) (p,T) for the case
of the absence of interactions of the solute particles (perfect solution) we may replace in

Eq. (3.254) D;z; by D", [304].
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80 3 Kinetics of Nucleation—-Growth Processes: The First Stages

It follows as a consequence from Eqs. (3.245) and (3.253) that the coefficient of aggrega-

tion witz 11 can be expressed as
(s),2/3 2/3 2/3
(+)  _ 3Degn Ws 4 (®),2/3 ws
'I.Un’,nJrl = T <(u,rn> = 4’ITDeHTL / amC <u},’n> . (3255)

Here the relation ¢ = 1/w,, has been employed, in addition. Since w,, is, by definition,
equal to the average volume a particle occupies in the solid solution, ¢ has the meaning of the
total volume concentration of the particles in the solution. Latter replacement transfers the
expression for wffg 41 thus also formally into the same form as obtained for segregation in
a one-component solid solution. Consequently, almost any of the results obtained earlier for

this case can be employed, now, for the analysis of the problem considered here.
(n)

Denoting by {gpi } the values of the activities of the different components in the ambient
phase required for an equilibrium coexistence of a cluster of size n in the ambient phase, we

may rewrite Eq. (3.253) in the form

16
i

d 3D(5) 2/3 s 2/3
et (“’—) oy e A— (3.256)
dt a?, W, H {%(n)}
The particular values of the activities {cpl(n)} can be determined from
n o0 2
) = c (3.257)

3y;nl/3’

Indeed, to prove this equation we may write down according to Egs. (3.239), (3.240), and
(3.248) the change of the thermodynamic potential in the formation of an aggregate of size n
as

\2/3
AS = [uz— - u§°°)} ta (Z—) . (3.258)

i

A derivation of this equation with respect to n; yields

0AD o 2a
o = =™ 7 = 0. (3.259)

The cluster of a given size is in equilibrium with the ambient phase if the chemical potential of
(n)

the different components in the cluster 1,
phase. This way, Eq. (3.257) is verified.
So far we have considered the case of kinetically limited growth. In this case, the con-
centration in the vicinity of the growing or dissolving aggregates coincides with the average
composition of the ambient phase far away from the growing or dissolving clusters. Anal-

ogous expressions may be established similarly for other mechanisms of cluster growth. In

is equal to the respective values y; in the ambient
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3.8 Formation of a New Phase with a Given Stoichiometric Composition 81

particular, for diffusion-limited growth we obtain [304]

3p®,1/3 X 1/3
Wi = o — (:j_) = 4xD{flasen'’? (3:260)
1
Dl = ——5—. (3.261)

Z y
, JiiDi
3

While nucleation is usually dominated by kinetically limited growth, Eq. (3.260) has to
be employed for the description of the growth of the supercritical clusters and for the de-
scription of Ostwald ripening (see Chapter4 and [155]). Note as well that the expressions
for the effective diffusion coefficients in the case of formation of a phase with a well-defined
stoichiometric composition — as discussed here — can be obtained straightforwardly from the
more general relations, Egs. (2.96)—(2.98), derived in Chapter 2 by setting the derivative of
cluster composition with respect to cluster size equal to zero.

Summarizing the first part of this section, the specification of both the thermodynamic
and kinetic quantities required for the theoretical description of formation of a phase of a
given stoichiometric composition is completed and the kinetics of phase formation may be
considered, now.

3.8.3 Applications

As a first consequence from the analysis of Eq. (3.237), we obtain the expression for the
steady-state nucleation rate J in the form (see, e.g., [298,303,304,306])

v, (+) A(I)(TLC)
J = [01:[% 1 w1 (ne) Yz exp (w : (3.262)
1 O2AD 1/ B
T — - - = e — — . .2
(2) onkpT ( On2 n_nc> 67 (ng/z&) (3.263)

Here A®(n.) and n. are the work of critical cluster formation and the critical cluster size in
nucleation determined by Eq. (3.242) or

2 2
a3 _ 20 B 3 o

- = 3kpT

3.264
© 3Ap (Aw/kpT)’ (264

The term in the square brackets in Eq. (3.262) is equal to the number of configurations in
the initial state of the melt which may act as centers for the evolution of the new phase (cf.
Chapter 2). Y. is the Zeldovich factor, again. Steady-state conditions are established in the
range 0 < n < 8n, after a time lag 7 equal to [298,309]

8né/3

put)(ne)

I

T

(3.265)
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82 3 Kinetics of Nucleation—-Growth Processes: The First Stages

Following the methods of the above analysis (for details see [298, 309]), a number of
further characteristics of the nucleation—growth process may be established like the number of
clusters, N, formed in the nucleation process and their average size, ( R), at the end of the stage
of independent growth of the already formed supercritical clusters, etc. The change of the
nucleation rate in the course of the transformation is due to the decrease of the concentration
of single particles from the initial values {c;(t = 0)} = {c;o} to the actual values {c¢;(¢)}.
Such changes of the concentration of the single particles affect the nucleation rate mainly via
its influence on the work of critical cluster formation A®(n..).

The work of critical cluster formation at some arbitrary moment of time A®(n.) (corre-
sponding to a critical cluster size n. and a concentration of single particles {c¢; } or the activities
{¢i}) may be expressed through the respective expression in the initial state A®[n.(0)] (at
concentrations {¢; = ¢;o} or activities {¢;o} referring to a critical cluster size n.(0)). In the
subsequent analysis, we start with the identity

Ad(n,)  Adn.(0)] Ad(n,)
kBT o kBT A(I)[TLC(O)} '

According to Eq. (3.244), the work of critical cluster formation depends on the actual value
of concentration or activity mainly via its dependence on Ay. It is assumed here that for the
considered relatively small variations of the concentration in the initial stages of the trans-
formation, the dependence of the specific interfacial energy on concentration is negligible in
comparison with its effect on the variations of Ayu. Since the considered variations of Ay are
also small, we may write

(3.266)

OAD(n,
A(n,) = AB[n,(0)] + L22e) [Anle)) - dulfen))]. G267
8AM {Ci=0110}

Employing Eqgs. (3.242), we have

A®(nc) _ A®[n.(0)] (Ap({ei}) — Ap({cin}))

2T kel n¢(0) { T . (3.268)

With the notation

7= (Au({cio}) — AM({Ci})):| (3.269)

kgT

and Eq. (3.262) we obtain

J(ne) = Jnc(0)] exp [-n.(0)¢], (3.270)

again. In the initial state, ¢ = 0 holds and J(n.) equals J[n.(0)].

As a next step, we have to determine the value of ¢, at which the process of active steady-
state nucleation is finished. For such purposes, we express the difference of the chemical
potentials of the components in both phases via the respective expressions for real or perfect
solutions (cf. Eq. (3.243)). We may write, in particular,

H oY ({ci}) H ¢} ({ei})

~po (3.271)
H@m {cio}) H%é {cio})
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3.8 Formation of a New Phase with a Given Stoichiometric Composition 83

for real solutions and

Vi Vi
11 11
4

p=—In| < — | >1- — (3.272)
H Ci0 H €i0
for perfect ones. We define the time of active nucleation, 7, via
n.(0)o(Tn) = 1. (3.273)

This definition corresponds to a decrease of the steady-state nucleation rate by a factor e ! in

comparison with its initial value. It follows as a consequence that during the time of active
steady-state nucleation ¢ < ¢ the inequality ¢ < 1 holds.

The value of ¢(7y ), respectively 7y, may be determined in the following way. From mass
balance, we obtain

cio = ¢ + /nif(n,t) dn=rc¢; +v; /nf(n,t) dn (3.274)

0 0
or
d [ 0fn1)
C; n,t

A, . 27

i v; /n 5 dn (3.275)
0

On the other hand, Eq. (3.272) gives

d(ﬁ v; dCZ‘

= — . 3.276

de Z Ci0 dt ( )

Equations (3.275) and (3.276) yield
4 2\ T af(n,t)
— = -+ ———~dn. 277
(D) [t aa)
v 0

The integral in latter equation can be evaluated analytically. We get similar to the above-
derived expressions

i—f = (Z g) Jne(0)]n(t) = A{1 + Bt}® (3.278)
with
A= (Z Z_z) Jnc(0)lg, g =8nc(0), (3.279)
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84 3 Kinetics of Nucleation—-Growth Processes: The First Stages

H i

D) X 2/3
B= T (:j—> In 71_[ ( ( ))w (3.280)
g’-a m o0
The solution of Eq. (3.278) reads
. A 4
F=1p [(1+Bt) —1}. (3.281)
With Eq. (3.262), (3.263), and (3.273), 7y is then obtained as
1/4
~ a1277, wm 4/3 25/2
[ Wl A 2
De s vy v
f G [Z (z)] [H (xﬂ)]
1 A®(n,.)
- . 282
xexp<4 kBT) (3.282)

It can be shown that the account of nonideality effects does not lead to significant changes
of the value of 7y as expressed by Eq. (3.282). Moreover, 7 < 7 also holds in this more
general situation. With NV = J7y, we obtain

Wi [ Ws 2/3 Ne
N = [cH(x?'i)] ( m/2 ) 73 ( eXP (—ZA:’B(T )). (3.283)
Z 5 Z(—)H@)]

The further evolution of the ensemble of clusters is connected with a consumption of free
monomeric particles of the different components. This process proceeds until for one of the
components the equilibrium concentration CEOO) is not reached. From mass balance we have,
for the highest number of particles of any of the components which may be incorporated into

the newly evolving phase, the following relation:

cio— ™ = ()N =v;(n)N,  i=1,2,... .k (3.284)
or
o]
(=" i=L2.k (3.285)

Obviously, the size of the clusters is determined by the lowest of the values [(¢;o — CEOO)) /v
of the terms on the right-hand side of Eq. (3.285), i.e.,

i=k
1 [Cio - Cl(-oo)]
(n) = N min{ —— . (3.286)
Vi
i=1
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3.8 Formation of a New Phase with a Given Stoichiometric Composition 85

With Egs. (3.248) and (3.283), we have, consequently,

3 AdD(n,.)
(n) oc exp (Z %3 ) ; (3.287)
1 A®(n.)
(R) x agexp (Z T ) , (3.288)

again, in full qualitative coincidence with the one-component case.

The growth of the supercritical clusters is limited, in the stage of independent growth, by
diffusion processes of the different components to the aggregates of the newly evolving phase.
The growth equation is obtained in this case from Egs. (3.242), (3.245), and (3.260) as

(b) 1/3
dn = 38Deg (ws nl/3 R i (3.289)
dt a2, W n/®  nl/3
In terms of the radius of the clusters (cf. Eq. (3.248)), this equation reads
drR 20D fw2\1[1 1
— = - == -=. 3.290
i G wle w a0

In the stage of dominating independent growth, we generally have (1/R) < (1/R.) and
Egs. (3.289) and (3.290) yield

d _, w (as\ [ Au

SR2_op® (L) (2K 291

al off (am> kgT )’ (3:291)
[T

A1 i . (3.292)

The time of independent growth 7gw¢n may thus be estimated as
a? 1 A®(n,.) )

exp | =

e
© Am k BT

As arule, it exceeds Ty, given by Eq. (3.282), considerably.

In addition to the mentioned characteristics of the nucleation—growth process, also the
evolution of the cluster-size distribution function in different regions of cluster-size space may
be determined. The method is fully identical to the respective approach described in detail for
the one-component case.

For the description of the late stages of coarsening (Chapter 4), interfacial effects have to
be accounted for, again. In the description of this process, thus Eqgs. (3.289) or (3.290) have
to be employed. These equations are of the same form as the respective relations governing
coarsening in the one-component case. However, the effective diffusion coefficient is, now, a
nontrivial combination of the partial diffusion coefficients of the different components. Note
that in the expression for the diffusion coefficients, Egs. (3.254) and (3.260), only one of the
components may have reached a concentration close to the respective equilibrium value. The
concentrations of all other components are determined then by Eqs. (3.284).

(3.293)

Tgrowth X
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86 3 Kinetics of Nucleation—-Growth Processes: The First Stages

3.9 Summary of Results

In the present chapter, the first stages of nucleation—growth processes are analyzed. The
method is based on the reduction of the basic set of kinetic equations of nucleation theory
to a Fokker—Planck-type equation and the approximative solution of this equation. In the ini-
tial state the segregating particles are assumed to exist in the form of single monomers only.

The respective derivations are outlined above in detail to make the analysis repeatable.
However, for those interested in the results only, a summary of the basic theoretical predictions
is believed to be of use. Such a summary will be given below.

3.9.1 Results for the Range of Cluster Sizes n < n.

The time evolution of the cluster-size distribution function and the flux in the range of cluster
sizes 1 < n < n.+ dn, is given by (cf. Egs. (3.54) and (3.55))

f(n,7) = fS(n) + ;exp {d’l’ - a—Q |:7' + %} }
’ WSV arbr w7

“+o0
/ 2
X / ng)Af(n',T =0)exp [% - %] dn’ . (3.294)
J(n,7) = —wH exp (—%(;)) ((% {f(n,T) exp (Alf;(;)>} . (3.295)

The dimensionless time scale 7 is determined by Eqgs. (3.13) and (3.14); the other parameters

wSH, a, b, and d are determined by Egs. (3.34), (3.38)—(3.40).
A steady-state cluster-size distribution and a time-independent flux in cluster-size space
are established in the considered region after an interval (cf. Egs. (3.64) and (3.65))

M o nd* N 5 n? \ 5 [l
T =0\ o5~ 1 S5\ o, ) T3\ Tage ) (3.296)
Buwn (nc) 6 Wn, (nc) 3 a1 e

The mentioned characteristics, steady-state nucleation rate, and steady-state cluster-size dis-
tribution can be generally expressed as (cf. Egs. (3.79) and (3.80))

3 AD(n,
Je (% ﬂ> arnlr= /) exp C%) , (3.297)
e (n) = c exp (— A;:}”) {iig’zﬂ ; (3.298)
where
A@(n’))
b

=(a,b) = / Mdn’, (3.299)

ey

/
a n
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3.9  Summary of Results 87

or, in a good approximation (cf. Eq. (3.85)), as

e (n) = (%) exp ( A]i(jqu)> erfc { %} . (3.300)

To obtain the expression, e.g., for the steady-state nucleation rate in real time scale, one has
to multiply the right-hand side of Eq. (3.297) with the ratio (7/t) (cf. Egs. (3.13) and (3.14)).
One has to proceed similarly to obtain the expression for the time lag in real time scale.

3.9.2 Results for the Range of Cluster Sizes n 2 n.
3.9.2.1 Results for the Range of Cluster Sizes n, < n < 8n,

< n., the further evolution is

~

Once steady-state conditions are established in the range n
governed by (cf. Egs. (3.92), (3.102), and (3.103))

~

J(n,7) = J(nc) erfe[¢(T)(n — ne)], ne <n < 8ne, (3.301)
- )

R exp |—a (7 — 7. ) (e

£(r) = . [ <T ! 1>( ' )} . for r>700 (3302

2 {1 28 (s ) o]

The parameters a and b are given by Eq. (3.95). The evolution of the cluster-size distribution
function with time is governed by Eq. (3.73), again.

Steady-state conditions are established in the considered range in a time interval Tr(eIII ) 1t
is determined by (cf. Eq. (3.105))

ap _ nl g

rel

= . 3.303
a1l ﬂwﬁf)(nc) ( )

Its value is of the same order of magnitude as Tr(il) (cf. Eq. (3.296)). The total time required to
establish steady-state conditions in the range of cluster sizes n < 8n. (or R < 2R,) is given

thus by (cf. Eq. (3.144))

snlfd gal/9n

Trel(R < 2R.) (3.304)

B ﬁwff) (ne) T 3aicef
Again, to express the time lag in real time scale, one has to multiply Eq. (3.304) with (¢/7).

3.9.2.2 Results for the Range of Cluster Sizes n 2 8n,

In the now considered range of cluster sizes, the flux in cluster-size space has, according to
Eq. (3.139), properties of a kink solution. It can be approximated for 7 < 75 by
J(R,T) = J[nc(())] exp{—nc(())@ [To (T, ?)}}G(Rmax —R) (3.305)
~ J[1(0)]0( Rinax — R) '

The theta function (z) is defined by Eq. (3.44), again.
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88 3 Kinetics of Nucleation—-Growth Processes: The First Stages

The position of the kink or the size of the largest clusters formed at time 7 is given by
Rax. This quantity is determined for kinetically limited growth by (cf. Eq. (3.142))

Ba;
Rmax = 2Fic + F(alc) [T - Trel(R < 2RC)] )

C

(3.306)
for T —Trel(R < 2R.) > 0.

It follows that the time lag for the establishment of steady-state conditions for clusters of sizes
R > 2R, may be written in the form

Teel(R > 2R.) = Tret(R < 2R,.) {1 + Z KQZ) - 1] } )

(3.307)
for R >2R,..

Based on this equation, one can determine the cluster-size-dependent time lag for any appro-
priate value of R > 2R.. This possibility is of considerable importance for a comparison of
theoretical and experimental results, since in experiments commonly only such clusters are
detected that exceed the size of the critical clusters by several times. For kinetically limited
growth we have further the following expression for the cluster-size distribution:

2/3
fnry = 20w dn Sonfen' (3.308)

AN ST
dr
Similarly, we obtained for diffusion-limited growth the following results (cf. Egs. (3.162)—
(3.165)):

J(R,7) = Jnc(0)] exp {—n.(0) [70(7, 7)]} 0 (Bmax — R)

(3.309)
= J[n(0)]0(Rumax — R),
2 2 25 3
Rmax = (2RC) + Fa‘s (alc) [T - Tr61(R < 2RC)] )
(3.310)
for T > 7rel(R < 2R.),
30/ R\?
Trel(R > 2R.) = Trel (R < 2R.) {1 + 11\ 3R -1 7,
(3.311)

for R > 2R,,
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3.9  Summary of Results 89
J(n, ) dn 3aq Bent/?

A
dr

3.9.3 Integral Characteristics of the Nucleation—-Growth Process

n> 8n,. (3.312)

3.9.3.1 Time Interval of Steady-State Nucleation

Due to the depletion of the system (decrease of the concentration of the segregating particles
in the course of the nucleation—growth process), steady-state nucleation can be established
for a finite interval of time only. For kinetically limited nucleation, this time interval can be
written as (cf. Egs. (3.182) and (3.183))

1/4 1/4
(k) _ Co > 49
=\ Jr=0) TRt (3.313)
N (J(T =0) (ng/gﬂ?’(alco)i"
2 Ol1/4
(k) ~ 3a;, (1 A@(nc)>
N = BT exp {7 : (3.314)
N 92wl 87/ Y D) 4 kpT
For diffusion-limited nucleation processes the relations
o (e NP e . (3.315)
N J(r=0) 32n.03(a1co)? )
202/5,,2/15

(@) o g 4980 ne 2 Ad(n,)
tn = 1.4 - 3.316
N wscoB5D P (5 inT (3.316)

hold (cf. Egs. (3.186) and (3.187)). Since QY4 and O2/5 can be set equal to 1 in a good
approximation, nonideality effects enter the expression for the time of steady-state nucleation
mainly via the work of critical cluster formation A®(n.).

3.9.3.2 Number of Clusters Formed by Nucleation—-Growth Processes

As a result of depletion effects only a finite number of supercritical clusters may be formed.
This number is given by

Ql/4 3 A®(n,
A 7010/6 (— (n )> (3.317)
ne! 6 33/8 4 kT
for kinetically limited nucleation—growth processes (cf. Eq. (3.200)) and by
3coQl/5 3A®(n,
N@, = 200 ex (- (n )> (3.318)
4n?/® 33/10 5 kpT

for diffusion-limited nucleation (cf. Eq. (3.201)). In both the cases, the number of clusters is
determined mainly by the work of critical cluster formation; these numbers are independent
of the value of the diffusion coefficients.
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90 3 Kinetics of Nucleation—-Growth Processes: The First Stages

3.9.3.3 Average Size of the Clusters at the End of the Stage of Independent Growth

After completion of the nucleation process (7 > 7y ), the supercritical clusters grow at the
expense of excess monomers existing in the system. The average size of the clusters at the
end of this stage is given by (cf. Egs. (3.207))

as €xXp <411 AIZI)B(%C) ) kinetically limited growth

Il

(R) (3.319)

1A®(n,) B o

Qs €xXp (5 “EsT diffusion-limited growth.

It can be easily recognized that the number of clusters increases while the average size of the
clusters decreases with an increase of the initial supersaturation.

3.9.3.4 Time Interval of Independent Growth

Provided the growth of the supercritical clusters is limited by diffusion processes of the seg-
regating particles the time interval for the stage of independent growth is given by

2
(kd) A a; 1 A(I)(nc)
torowth = 57— = 3.320
govth = 9 Do L (2 kpT (3320

if the nucleation process proceeds by kinetically limited growth, and

2
() o 05 <2A<I>(nc)>

growth — 2Dw560 5 ]CBT

(3.321)

for diffusion-limited nucleation.

This way, the basic characteristics of the initial stages of first-order phase transitions are
established analytically. Hereby both time-lag effects are reconsidered as well as time de-
pendences connected with the depletion of the state of the ambient phase in the course of the
nucleation—growth processes. Moreover, simultaneously the respective expressions have been
derived for two of the most important mechanisms of kinetically and diffusion-limited growth
of the aggregates of the newly evolving phase. An application of these methods to bubble
formation in liquid—gas solutions is given in Chapter 9; the particular case, when the growth
of the bubbles is governed by Rayleigh’s equation, is analyzed in the project report [241].

In comparison with previous investigations [298], the method of analysis employed here
is applicable to condensation or segregation processes not only in ideal but equally well in
any kind of real systems. It was shown further that nonideality effects enter the description
mainly in the final expressions of the theory via the appropriate formulas for the work of
critical cluster formation. Moreover, in comparison with Ref. [298] the accuracy of some of
the estimates could be improved.

As shown also the respective results for nucleation and growth of a phase with a given
stoichiometric composition can be obtained immediately by an appropriate replacement of
some of the parameters of the theory.

www.iran—m L\V‘dLLC() m

Age Crwdivs 9 Olgils @ yo



3.10 Conclusions 91

3.10 Conclusions

In the present chapter, a theoretical description of the basic characteristics of the first stages
of nucleation—growth processes has been developed. The results can be compared both with
experimental findings and the results of computer calculations [164,247] (see Chapter 5). Such
a detailed comparison between the theoretical predictions as outlined here and the results of
experimental research as well as computer calculations requires an extensive discussion which
goes beyond the scope of the present monograph. To some extent, it will be given in Chapter 5.
Moreover, as it has been shown recently the results may be employed also for an analysis of
nucleation—growth processes at time-dependent external conditions. For an applications of the
methods outlined here to such boundary conditions, cf., e.g., [90,244].

As already mentioned, once the first stages of nucleation—growth processes, analyzed here,
are passed, the system goes over continuously into a stage of competitive growth denoted
commonly as Ostwald ripening or coarsening. A satisfactory theory of this process has been
developed first by the author in cooperation with Lifshitz [155]. The theory has been extended
later considerably [289, 290], but its basic conclusions remain unchanged. This theory is
presented in Chapter 4. This way, a complete description of the whole course of first-order
phase transitions is available, now.

Finally, we would like to note that the results obtained may be used also as a means to test
the accuracy of different expressions for the work of critical cluster formation. Quantities like
the number of clusters formed in nucleation—growth and their average size may be determined
easily experimentally. Therefore, by applying the respective theoretical expressions for these
quantities, conclusions concerning the appropriate expression for the work of critical cluster
formation can be drawn straightforwardly.
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4 Theory of the Late Stages of Nucleation—-Growth
Processes: Ostwald Ripening

4.1 Coarsening

4.1.1 Introduction: Formulation of the Problem

As was already discussed in detail in Chapter 3, first-order phase transitions which result in
the formation of a new phase via decomposition of a supersaturated solid (or liquid) solution,
proceed in several stages. In the first stages, described in detail in Chapter 3, new-phase aggre-
gates arise in a stochastic manner via thermal fluctuations. These precipitates grow then in the
supersaturated solution consuming monomers and reducing the supersaturation considerably.
In the subsequent final stage of the process, when the precipitates are large enough but the
supersaturation is low, the further evolution of the ensemble of clusters is mainly determined
by coarsening processes, i.c., larger clusters grow at the expense of the smaller ones which
are dissolved. In English literature, in order to describe these late stages of the decomposition
process, the term “ripening” or “Ostwald ripening” is commonly applied while in Russian
literature the term “coalescence” is often used instead. As shown in Chapter 3 already at the
intermediate stage of independent growth and, in particular, at the late stages considered now,
the stochastic generation of new supercritical nuclei is an unlikely event since they would have
to be macroscopic in size.

In the present chapter, the theoretical description of the kinetics of precipitate growth, the
coarsening process, at this later stage is developed. In formulating the problem, we make
first the simplest assumptions concerning the system under consideration reflecting the most
essential features, for example, we neglect a possible anisotropy and assume the precipitates
to be spherical. Deviations from such simplifying assumptions, for example, from a spherical
shape result in modifications of some numerical constants in the subsequent equations [153,
155], however, not changing the basic results. Going over to the theoretical description, we
derive first in the subsequent analysis some basic dependences required to develop the theory.

We consider a solid solution consisting of two components. One of the components with
the volume concentration c is assumed to segregate and to form clusters consisting exclusively
of this component (generalizations of this assumption will be considered in more detail in
Chapter 8). The equilibrium conditions for a stable coexistence of the evolving macroscopic
phase with the chemical potential p, (p, T') with the macroscopic solution with the chemical
potential pg(p, T, c) then read

pa(0;T) = pp(p, T, coo)- 4.1)
Here ¢ is the concentration of the saturated solution.
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94 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

For a critical cluster of finite size, being in equilibrium with the solution, we have instead

Mo (pom T) = Mg (pa T, CR)' 4.2)

Here cp is the concentration of segregating particles in the solution required to fulfill the
necessary conditions for thermodynamic equilibrium.

The pressure in the critical cluster is connected with the pressure in the surrounding solu-
tion via the relation (Young—Laplace equation)

20
o — D= —. 4.3
Pa =P =% 4.3)
By a Taylor expansion of the chemical potential of the cluster, we then obtain
Ol 20 20w
a\lFas T = @ ? T - — Ma ) T . 44
pa(Par T) = pia(p H(ap)papR pa(pT) + — 4.4)

Here w is the volume of an atom of the segregating component. Assuming that the solution
can be described as a perfect solution

w(p, Tyc) = po + kpTlnc 4.5)

(kp is the Boltzmann constant) and taking into account the equilibrium conditions for planar
interfaces, Eq. (4.1), we arrive at the well-known Gibbs—Thomson equation [144]

cRgcoo-i—E, 4.6)
where « is related to the interfacial tension o via
20w
= . 4.7
o T 4.7

Therefore, the equilibrium concentration of a dissolved substance at the surface of small-
sized precipitates exceeds that at the surface of large precipitates, thus inducing a flow of the
dissolved component, from small precipitates into the matrix and to large precipitates out of
the matrix. Neglecting the diffusional interaction between the precipitates in a polydispersed
ensemble (assuming that the ratio of the mean size of precipitates, R, to the mean distance,
1, between them is small, R < Z), we get the following equation for the diffusional flux of
dissolved particles per unit area of the precipitate surface:

. oc
in=-0(5)

To determine the concentration, we use the self-consistent mean-field approximation, which
is valid when @y < 1, where () is the volume fraction of the precipitating species. Note that

(4.8)

r=R

the form of the equation for the diffusion flux is generally preserved even with Qé/ 3 <1
The variation of the precipitate volume is determined by the flux of the dissolved atoms
per unit time onto the precipitate surface

% (%TR?’) = —47R%*jr = 47R?D (@>

= : (4.9)

r=R
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4.1 Coarsening 95
and hence the rate of change of the precipitate radius is given by
dR Jc
——_p(=
dt ( or )

The partial derivative, (Oc/0r), can be determined by solving the corresponding diffusion
problem. We get

% = DAc, cl,_p = cr, c| =C. 4.11)

(4.10)

r=R

It is easily seen that for small initial supersaturations,
Ng = (EO — COO) <1, 4.12)

the flux can be obtained by solving the steady-state diffusion problem. In fact, the ratio of the
characteristic time of establishment of a steady-state diffusion flux of the dissolved component
at the surface of a precipitate,

- (Ez /D) , (4.13)

to the characteristic time of variation of the precipitate size,

2

R R
o ~ ~ : 4.14
™D (0c/or) DAy (4.14)
is given by
I L Ap < 1L (4.15)
Tch

Solving the steady-state diffusion equation ((9c/dt) = 0) assuming that the supersatura-
tion, A = ¢ — ¢4, all the time remains low, A < 1, and the diffusional interactions between
the precipitates can be neglected, we arrive at an equation for the diffusion flux of dissolved
matter normalized per unit area of the precipitate surface in the form

. Oc
-i=2(5)

and, accordingly, at an equation for the rate of change of the precipitate radius

- =2(a-3). @.17)

D D o
r:RZE(C_CR):E(A_E)’ (4.16)

Thus, for any given supersaturation, A, a critical radius R., = («/A) exists such that the
precipitate is in equilibrium with the solution, with the precipitate growing when R > R,
and dissolving when R < R.,. The existence of such critical cluster radius R, implies the
dissolution of smaller precipitates by greater ones. The supersaturation A itself and R, are
time dependent.
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96 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

From here on we shall use the dimensionless variables p = (R/Rq;), t' = (t/T), Rer, =
(a/A¢),and T' = (R3, /aD), Aq being the initial supersaturation and R.., the initial critical
radius. By omitting the prime in ¢’ we get

RCI'

dp? P
— L | = 4.1
dt 3 (Jc ) ’ z(t) Rey,’ (4.18)

where x(t) is the dimensionless critical radius, 2(0) = 1. Introducing further the distribution
function f(p,t) of the precipitates with respect to size, and considering v, = (dr/dt) as the
rate of change of the precipitate in cluster-size space, we can formulate the equations for the
determination of the unknown functions f(p,t) and x(¢). The first of these equations is the
continuity equation in cluster-size space

af  d B
Bt 5 ) =0 (4.19)

The second one is the law of conservation of matter
dr o 3
Qo =240 +q =A+gq, q= chrO fp’dp, (4.20)
0

or, taking into account that x = (Ay/A), we have

AO 7 3 471' Rgr
l=—+=& dp, K= ——2. “4.21)
Qox ) fo'dp 3 Qo

In these equations, () is the total initial supersaturation that includes the initial volume of the
material in the precipitates, go. In Eqgs. (4.19) and (4.21), f is normalized to a unit volume;
therefore, n = fooo f dp is the number of precipitates in a unit volume. Equations (4.19) and
(4.21) provide a complete set of equations for obtaining an asymptotic solution for the given
initial conditions in the case when stochastic formation of new phase nucleation centers is
completed or can be ignored.

Note that Eq. (4.19) includes the hydrodynamic term 0% (fv,) only. In fact, this is an
approximate equation that can be refined by writing a Fokker—Planck-type equation involving
next-order terms of expansion in small gradients in size space. These corrections may seem
considerable in a region where dR/d¢ is small. However, with the supersaturation monotoni-
cally decreasing, this region is in continuous motion and the precipitates of a given size enter
the region for only a very short period of time. Under this condition, the diffusion term in
cluster-size space is insignificant. This conclusion will become evident upon going over to
relative variables. Our aim is to find an asymptotic solution to Egs. (4.19) and (4.21), with the
initial condition f(p,0) = fo(p).

4.1.2 Asymptotic Behavior of the Critical Cluster Size

In order to solve the problem posed, the knowledge is required first of all of the asymp-
totic behavior of the critical cluster size, 2(t) (or alternatively the supersaturation, A(t) =
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4.1 Coarsening 97

(Ag/z(t))). The pattern of motion of the point p representing the precipitate radius along the
size axis is as follows: the points to the left of x(t) are accelerated to the left and disappear
on reaching the origin (complete dissolution of precipitates); the points located initially to the
right of x(t) move further to the right (precipitates are growing) but, with the further decrease
of the supersaturation, the critical size x(¢) increases, and catches up, one after another, the
points moving toward the right-hand side of z(¢). The latter points then start moving into
the opposite direction and also disappear on reaching the origin. The motion proceeds in an
ordered fashion so that the original sequence of points is preserved.

Both the form of Eq. (4.18) and the physical meaning of the variable x(¢) make it natural
for us to choose, as an independent variable in Eqs. (4.18)—(4.21), the radius divided by the
critical radius, rather than the precipitate radius p, i.e.,

w= " (4.22)

x(t)
Since the supersaturation tends to zero (A — 0) with times approaching infinity (¢t — o0), so
that z(t) — oo, the value of () can therefore be used as a measure of time.

Formally, the case when the original distribution is described by a o-function (fy = Ad(p—
£0)), or by a sum of ¢ functions, is an exception. In this case, 2(t) — const when the size of
the clusters reaches the equilibrium value. However, this situation corresponds, in general, to
an unstable state since any arbitrarily small perturbations of the original distribution lead to
x(t) — oo.

A detailed analysis shows that the canonical form of the equation of motion (4.18) is
obtained if the time is measured in terms of

7 =Inz3. (4.23)
Substitution of Eqs. (4.22) and (4.23) into Eq. (4.18) leads to
du?
- = —1) =3 4.24
& = =1 (4.24)
dt
v=7(1) =375 (4.25)

Let us denote by u(v, 7) the solution of Eq. (4.24) with the initial condition u|__, = v.
Then, taking into account that p(v, 7) = zu(v,7), (0) = 1, and 7|,_, = 0, the total amount,
q, of matter in the precipitates can be expressed in terms of the original distribution function

fo(p) as

q=rQo / fo(v)u? (v, 7) do. (4.26)
vo (T)

Here vg(7) is the solution of the equation u(vy(7),7) = 0, i.e., the lower limit of the initial
size of the precipitates that remained undissolved at time 7. Noticing that 2% = ¢”, we can
rewrite Eq. (4.21) as

1—e /3 = kge™ / fo(w)u® (v, 1) 4.27)

vo(T)
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98 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

Equations (4.24) and (4.27) provide a complete system of equations with v(t) = 3(dt/dz?)
being an unknown function. They can be used to determine it and to then obtain x(t).

There exist three possible types of asymptotic behavior for v(7) when 7 — oo: (i) y(7) —
00; (ii) y(7) — const and (iii) v(7) — 0. We begin the detailed analysis of these possibilities
with the case y(7) — const. Depending on the value of +, the plot of the velocity, du?/dr,
vs u may either touch the abscissa axis (when v = o = 27/4) or pass below this axis (with
v < 79) or have a segment of positive values (when v > ~) (see Figure 4.1).

1

Y>Y,

du’dt

-2
0.5 1 1.5 2 2.5
u

Figure 4.1: du® /dr as a function of  for different values of ~.

Let us now consider several different situations: (a) When y > -y, all the points to the left
of u; are moving leftwards and disappear on reaching the origin; all the points to the right of
uy are moving to the point us asymptotically approaching it from the left or from the right.
The integral on the right-hand side of Eq. (4.27) with 7 — oo approaches the constant value

Iy = u / fo(v) dv, (4.28)

while the total precipitate volume g on the right-hand side increases as €7, i.e.,
q = klpe™ — oo, T — 00, (4.29)

so Eq. (4.27) is not satisfied. The fact that a constant value of v > - is attained only asymp-
totically does not jeopardize the above statements: we should only move the time origin and
relate the expression fo(v) to a moment when (7) approaches its asymptotic value.
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4.1 Coarsening 99

(b) When v < , all the points are moving leftward and reach the origin in a finite time.
By the time, 7, according to Eq. (4.24), all the precipitates with an original size smaller than
vo(7) dissolve, and the value of v (7) is given by the equation

vo(T)

3u? du

With 7 — oo we have vy(7) = e™/3. The total precipitate volume is therefore determined by
the tail of the original distribution, fy(v),

q(1) = ke / fo()ud(v,7)dv = K / fo(v)v® du. (4.31)

eT/3 eT/3

When v — oo then fo(v) > v~" with n > 4 (since u(v,7) ~ ve~7/3). Thus, ¢(7) in this
case approaches zero and Eq. (4.27) has no solution.

The above considerations with respect to the cases when v > 7 and v < ~q are further
strengthened for the cases when v — oo and v — 0, respectively. Thus, only the case when
~v(T) — o = 27/4 should be considered as a physically reasonable solution.

First of all it should be noted that once the exact identity, v = - is fulfilled all the points
to the right of the point of contact, up = 3/2, in their motion toward the left cannot pass the
point of contact ug and become embedded in it. In view of this, when v > g, Eq. (4.27)
cannot be satisfied (¢(7) ~ €™ — oo when 7 — 00). This result suggests that the expression
~(7) should approach vy from below, i.e., as

(1) = (1 —¢e(1)). (4.32)

As shown below, £2(7) ~ 772. The points approaching ug from the right leak through the
blocking point, ug = 3/2, with decreasing rates. The leakage rate is determined by the
value of ¢(7) that is to be evaluated along with v(7) from Eq. (4.27) and the equation of
motion (Eq. (4.24)). This form of the function () is obligatory for an ordered motion of the
precipitates from right to left in the relative size coordinates, which corresponds to du/dr < 0
for all u. Otherwise there would be no leakage, in the precipitate size space, from the right
into the region to the left of the blocking point ug = 3/2, and as R., = (a/A) — oo with
T — 00, A — 0, the amount of matter would be increasing infinitely, which is impossible.
The leakage should proceed in such a way that the size distribution ensuring the balance of
matter has enough time to evolve.

Note that, for v > ~o = const, the specific initial conditions nullifying du/dr at the point
u = ug can be formally found in an infinite variety of ways. Accordingly, an infinite number
of solutions satisfying both the continuity equation and the balance of matter can be obtained.
However, taking fluctuations into account immediately leads to a nonzero probability of the
precipitates arising to the right of ug, which violates the balance of matter. All such solu-
tions (for v > 79 = const) are therefore unstable and physically meaningless. As is readily
seen, the amount of matter to the right of the blocking point w¢ is negligible. Neglecting this
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100 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

amount of matter means that £2(7) is set equal to zero along with f at u > ug. We call this
approximation the “zeroth-order hydrodynamic approximation.”

A unique solution corresponding to v = 7y really exists in this zeroth-order approxima-
tion. The velocity (du/dr) must have a second-order zero in this approximation; then, taking
into account £2(7) = 0, we immediately arrive at the asymptotic values of ug and 7y, and
hence at the asymptotic values of critical sizes and supersaturation

w\| 0 [
dr u:uO_’ or \dr

from which we get the already known values of ug = 3/2 and ~y = 27/4. Accordingly,
taking into account that R, = (a/A), and A = (a/R.,), we have equations for the critical
size from Eq. (4.25)

=0, (4.33)

U=ug

4
R:C)’r = Rfro + §Dat, (4.34)
, 4 4D \'V3
R,fr = §Dat, A= <9a?t) when T — 00, (4.35)

where R, is the critical size of the system at a stage when the decomposition obeys the
asymptotic equations (unlike the initial critical size introduced in Eq.(4.18)).

4.1.3 Asymptotic Behavior of the Distribution Function

In accordance with the results obtained in the previous section, we shall look now for the dis-
tribution function depending on the new variables u and 7. The distribution function o (u, 7)
with respect to relative cluster sizes, u = (p/x), is related to f(p,t) through the obvious
equation

e(u,7)du = f (p,t) dp =z f (p,t) du, (4.36)
where
f= p(uT) (4.37)
X

The continuity equation for ¢ (u, 7), with 7 > 1, assumes the following form everywhere
except in the vicinity of the point ug:

Jdp 0

_ = - 4.
5~ gy (P9 (W) =0, (4.38)
du 1 3\? 3
_ = — = — —_ = < < = — 4.
dr g (U)‘,Y:,YO 3U2 <u 2) (U + 3) ) 0 SUS U 27 ( 39)
du _o, w> up. (4.40)
dr
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4.1 Coarsening 101

The solution to this equation in the region to the left of ug is

o= X0 g, (4.41)

g (u)
v =0, u > uo, (4.42)

where we introduced the notation

[ du 4 5 /3 1 33e
- & 2 R S N 44
1P /g(u) 3n(u—|—3)+3n<2 u>+1(2/3)u 05575 (4.43)
0

and Y is an arbitrary function to be specified.

The above analysis of the equation of motion (Eq. (4.24)), i.e., of the characteristics of
Eq. (4.40), suggests that the vicinity of the point uy can be considered as a sink for all the
points u > wug and as a source for the region u < wug (in the region © < wug, the origin
u = 0 is a sink). While moving from left to right, all the points pass through the vicinity
of the blocking point wg; the later they arrive in this vicinity, the longer they stay there. The
distribution function in a region to the right of the point uy where 7 — oo is determined by an
infinitely distant part of the tail of the original distribution, and its cumulative contribution, as
shown below, rapidly approaches zero in terms of both absolute and relative values. As shown
below, the relative contribution from the vicinity of the point uq also vanishes when 7 — oo.

Thus, precipitates with u < wug contribute predominantly to the law of conservation of
matter. Accordingly, the law of conservation of matter can be employed as an integral equation
defining the zeroth-order asymptotic behavior of the distribution function for u < wug (the
distribution function for © > wg is equal to zero in this approximation). Taking this into
account, we substitute the solution of Eq. (4.40) into the law of conservation of matter to get
an asymptotic equation for x in the form

3/2

I:HeT/X(TJriZJ)

0

ud

g (u)

du. (4.44)

The functions x (7 + ¢) and ¢(u, 7) are easily inferred from these equations as

X(T+v)=Ae7Y, (4.45)
u? exp { 71
e T 3le 11— (2/3)u 3
Pl = A"y = wn® /3 nE 4S5 (4.46)
g(u (uw+3)"7((3/2) — u)
where
3/2 5 -1
_ 3Qo Qo
A= v Y ~ 0 02220 4.4
" O/ T AT R3 111 0 R?. (447)
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102 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

It is evident that the asymptotic behavior of the distribution function for u < ug is independent
of the original distribution function.
The number of particles in unit volume, according to Eq. (4.46), is given by

3/2

3\*% 4
n(r) = / o (u,7) du= Ae™ " = <§> < (4.48)
0
Let, now, P(u) du be the probability of a particle having a size between v and u + du. Then
Y (u,7)=n(r) P (u), (4.49)
where
u? exp {— S }
icf - 1—(2/3)u( u<ug=3
Pu) =14 22/ (u+3)/((3/2) —u)"/*’ 2 (4.50)
0, U > ug = %

The function P(u) is shown in Figure 4.2.

P(u)

05

Figure 4.2: Dependence of the distribution function density P(u) on the reduced radius w = /7.

This probability P(u) can be conveniently expressed in terms of a slightly different re-
duced variable by introducing the maximum size
3 P U 2

m:—x’ = — = — = —1U. (4.51)
P 2 Pm Um 3
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4.1 Coarsening 103

Then we get
P (u) du = Py (v) dv, (4.52)
where
7/3,,2 1 1
62/ v exp{_l—ﬂ}(v+2)7/3(1_v)11/37 ’U<].,
P (v) = (4.53)
07 v > 1.

These equations completely define the asymptotic distribution of particles with respect to size
and time.

When measurements are performed at some etched microsection of the system under in-
vestigation, the distribution function ®(r, 7) with respect to the circular sections of the pre-
cipitates r is given, as can be easily shown, by

F,r)dl=®(r7)dr, ®(rr)=a"'F <x€7)7> (4.54)

Y o(ur)

o (u,7) du
F(l,7) =2 _pT)cu 455
(i,7) x<r>/ L (4.55)

where
r R

= - G (4.56)

These dependences are illustrated in Figure 4.3.
Now note that

3/2 0o
— ]_ < 00
/e w“ /e () — 1) dy = e ¥ud ()| = 0. 4.57)
0 0
We have used here the relationship
du? 3 4
— =uw - = (u—-1). 4.
w - (4.58)

It suggests that w = 1; hence
p=ur=ux(r). (4.59)

The distribution function in absolute variables p can be obtained by simply replacing w in
Eq. (4.46) by p/z and dividing by z, where

23— %t- (4.60)
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104 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

1

0.75

0.5

F(l,7)/2n(7)

0.25

0 0.5 1 1.5

Figure 4.3: Distribution function density in dependence on the size u of the precipitates as revealed on
the surface of the microsection.

Bearing in mind that, according to Eq. (4.59), u = R/R, and turning back to the original
dimensional variables, we get

F(RA) =n()P (%) - (4.61)
n()=0Q(®°, G022, R =Dar 4.62)

and P(u) is given by Eq. (4.49). The supersaturation at a given time is given by the following
expression:

o= s e

Let us finally consider the limits of applicability of the above equations. It follows from
the above analysis that the asymptotic formulas are valid provided that the inequalities

2

R —
) > 1, R > R, (4.64)
RCTQ

2 =@Bhz) =9 <1n

are fulfilled. Here R ¢, = (a/Ap) is the initial critical radius for the coarsening process (with
Ay being the initial supersaturation).
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4.1 Coarsening 105

It should be remembered in this connection that, with the initial mean size of precipitates
being of the order of the critical size (Ry & Re, ), it is the latter size that appears in the above
estimate. If, however, Ry > R.,, then, at the early stage, the precipitates start growing
from the solution directly, with the process going on until the supersaturation drops to so low
values that the mean size approaches the critical size (R; ~ R..) thus initiating the coarsening
process. These size values should appear as the initial ones. They are largely determined not
only by the initial supersaturation but also by the initial number of nucleation centers (provided
that this number can be considered as being fixed).

If, say, the initial supersaturation is Ay, the initial number of precipitates is ng and Ry >
Ry, = (a/Ay), then the precipitates will go on growing from the solution until they reach
the size

TR~ 20 (4.65)

while at the early stage

—2 =3
dR 4T —3 R
— =2D(A¢g— —R =2DAg(1——— . 4.66
Qi ( 0= 3 no) 0 ( R§r0> (4.66)
The duration of the early stage of independent growth is 1 ~ (Ef / DAO).

The later stage (coarsening) begins at the characteristic time

)
Rex,

to ~ —L ~ ¢ 4.67
™~ Do 1 (4.67)

i.e., in the case under consideration when R; > Rey,, to > t1. The time dependence of the
mean cluster size in both stages of independent growth and coarsening is shown schematically
in Figure 4.4. A more detailed numerical analysis will be given in Chapter 5 (for the respective
analytic estimates of the number of clusters evolving in nucleation-growth processes and their
average size at the end of the stage of independent growth, being the initial state of coarsening,
see Chapter 3).

4.1.4 Boundary Effects and Theory of Sintering

In the foregoing section we discussed coarsening in an infinite homogeneous space. Accord-
ingly, macroscopic diffusion flows of the dissolved material were not included in the formula-
tion of the problem. The situation changes dramatically if spatial homogeneity is lacking; the
most important inhomogeneous case is associated with the presence of a border between the
solution and another phase. If the second phase (or, more generally, the phase constituting the
precipitates under consideration) is formed by a purely dissolved material, then the supersatu-
ration at this border is given by A|,_ and it induces a macroscopic diffusion flow toward the
boundary.

We shall now consider here the important case where vacancies act as the atoms of a
dissolved material while the pores (voids) produced by coagulation of vacancies inside a crys-
tal supersaturated with vacancies plays the role of the precipitates. In the presence of a free
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106 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

0 2 t

Figure 4.4: Time dependence of R

surface, two competing processes will occur in such a crystal: growth of pores and their coars-
ening in accordance with the above scheme in regions distant from the border, and dissolution
of pores and repulsion of vacancies to the boundary (considered as a pore of an infinite ra-
dius) by a diffusion flow. The latter process of repulsion of pores is the physical origin of
the sintering phenomenon. It is this particular process that is discussed below although all the
results obtained in the course of the analysis apply, of course, also to more general cases of
decomposition of supersaturated solutions.

The equations defining the precipitate growth (Eq. (4.17)) and the distribution function
(Eq. (4.19)) remain valid in the half-space case, too. However, the law of conservation (Qy =
A + ) of mass that corresponds to Eq. (4.21) must be replaced by the diffusion equation.
Every point z is a source (or a sink) with a strength, (dg/dt), ¢ = ¢(z,t), determined by the
dissolution of pores. Thus, the exact equations take on the following form:

d(A+q) A

ot =D 5.2 Al,_, =0, (4.68)
= ka? /OO fo () u? (v, 7) dv x = Ao (4.69)
q 0 ’ ’ A (Z, t)7 .
vo(7)

where u(v, 7) satisfies Eq. (4.24) and is determined by the form of the function A(z, ).

The above analysis showed a kind of stability of the resulting asymptotic variation of the
supersaturation A = At~'/3: namely, an arbitrarily small slowing down of the asymptotic
decrease of the supersaturation potentially stimulates an unlimited growth of the precipitate
material (¢ — o0), which is impossible. On the other hand, even a small acceleration of
the asymptotic decrease of the supersaturation would result in a relatively fast and complete
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4.1 Coarsening 107

dissolution of the precipitates (¢ — 0). The asymptotic behavior of the sintering process
proceeds therefore as described below.

There are three distinct regions in a crystal: (a) The most distant region (22 < z < 00) is
that where the effects of the border are negligible and the supersaturation is given by Eq. (4.63)
for an infinite space. (b) The region z; < z < 29 is the range where dissolution of pores (pre-
cipitates) is observed. (c) The region 0 < z < z is the range where pores are completely
lacking and a purely diffusive repulsion of vacancies takes place. The boundaries of these
regions z1 (t) and 2, (¢) are moving into the sample interior, so the pore-free crust is con-
tinuously thickening. In fact, the set of Eqgs. (4.68) and (4.69) has to be solved only for the
intermediate region z; < z < 29.

However,

2T o, (4.70)

22
as shown below. By taking

21+ 29
2

—¢ 4.71)

as a first-order approximation, and replacing this region by a corresponding boundary condi-
tion, we derive the position of the boundary £(¢) and the concentration variation in the surface
layer 0 < z < & (in the crust). Thus, we have

OA  _9°A
5 = Do 4.72)
_ oA ¢
frng frng 1/3 _— — _—
Al,_g=0, Al =x"" D ( az> D Qug- 4.73)

The latter condition replaces the intermediate region and represents the fact that the bound-
ary £ (t) is a source with the strength Qq(d¢/dt) (since all the excess vacancies on the right
are concentrated inside the pores). We shall seek a solution to Eq. (4.69), with the boundary
condition A[,_, = 0, in the form A = 3" o, (t)2". From Eq. (4.72) we get

P (651} 2n+1 ~ 1d
A= Zgnﬂ - P ow @79

Before we go over to satisfy the other two boundary conditions we note that asymptotically
aq (t) is a decreasing function of time since it represents the flow at the boundary, z = 0 (o ()
= D(dA/dz)|,_,). Accordingly, we shall seek the asymptotic value of v () as a; = (7%,
s > 0. It follows from Eq. (4.72) that

z o0 22 nS S cee (S n
A:ﬂ—sZ(fl)" () ( +(217)l+1()!+ ). 4.75)

As shown below, asymptotically £2(t) varies more slowly than ¢, i.e., (£2/t) — 0 as
t — o0. Thus, the asymptotic behavior is mainly determined by a term with n = 0 resulting
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108 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

in

A= % = a1z. (4.76)
Substituting Eq. (4.75) into Eq. (4.72), we have

IRV YE _ Qo ds 4

Oélf At s (03] D dt. ( 77)

This results in
_ 3\*% ~1/2 1/3 ~—1/2
5_¢§§ RQy'* =m (Dat)'"” Qg "7, (4.78)
3
7n::<§>v5F:2, (4.79)
1/3
A= a1z Z Moz ol (4.80)

& 370 (D
It only remains for us to compute the relative width of the intermediate region. According

to Eq. (4.80), we have

) ot T

o6 _ot_ Ta (4.81)

& 3t (H)3t
where T} is the dissolution time of the largest precipitates residing on the boundary by the
time ¢, Rimax = (3/2) Rc;. A simple calculation shows that

dt 27
=—3— < — < 4.82
Y dz3 = 8 Yo ( )
in the equation of motion. This equation yields the dissolution time of the biggest precipitates
as

3 t
== T, ~ —. 4.83
Uo =5 i~ 3 (4.83)
For the relative width we have
0 1
-~ . 4.84
£~9 (4.84)
Incidentally, note that
08 1 10
—= == 1. 4.
R 3620 > (4.85)
Furthermore,
) 1 1
fz 015 P =3Q > L Qe (4.86)
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4.1 Coarsening 109

where [ is the mean distance between precipitates. The inequalities (4.85) and (4.86) suggest
that 6¢ > 1 > R, i.e., the width of the intermediate region is considerably larger than the
mean interpore distance and the mean pore (precipitate) size, and at the same time it is consid-
erably smaller than the width of the first region (the crust). All our assumptions made when
evaluating the asymptotic behavior are thus valid. The asymptotically valid relation (4.80) is
applicable to the same times as those obtained for the asymptotic behavior of coarsening in an
infinite volume.

A peculiar situation occurs when we consider a sample of a finite size (rather than a sample
with one boundary). To illustrate this, a plate of thickness a manifests three characteristic
times: the time it takes the vacancies to diffuse from the interior of the plate onto its surface,

To ~ (a?/D); the time it takes the pore to grow from the solution, 7} ~ (Ez /D)Ay, and

T . —3 .
the characteristic time of coarsening, Ty ~ (R /Da). To allow for the crust mechanism
of sintering described above, the time of the diffusion outflow, T, must by far exceed T¢,,

. 9 —3 . S .

ie., a* > (R /a); the mean pore sizes appearing in this inequality must correspond to a

well-developed coarsening process. In another extreme case (at Ty < T,) the vacancies flow
. . . . =3

outward having no time to form pores. In the intermediate case, a? ~ (R / a) , the process

kinetics is determined by several factors associated with the original distribution function and
cannot be described in a general way.

4.1.5 Diffusive Decomposition Involving Different Mass-transfer
Mechanisms

The late stage of first-order phase transitions, or coarsening, studied in this chapter, is essen-
tially observed in experiments as the diffusive decomposition of supersaturated solid (liquid)
solutions. In what follows we shall often use the term “diffusive decomposition” as an equiv-
alent to the notion “coarsening.”

Hitherto we have discussed the diffusive decomposition of a supersaturated solid solution
under the condition where a transfer of mass between macrodefects was mediated by volume
diffusion. Sometimes mass transfer is not primarily attributable to volume diffusion but, de-
pending on the external conditions and the structure of the material, to other mechanisms such
as diffusion along the dislocation lines or dislocation network, and diffusion along the grain
boundaries. In addition, one can imagine growth processes where the decomposition kinetics
is completely determined by the rate at which point defects cross the interfacial boundary or
by the rate at which bonds are formed on the growing surface of a macrodefect [342]. In all
these cases the basic canonical equations remain the same as those in the case of the volume
diffusion transfer of mass. The only difference is found in the equation for the rate of growth
due to the particular mass-transfer mechanism.

The rates of diffusional growth of macrodefects for different mass-transfer mechanisms
are specified by the equation

n>2. (4.87)

dR  Dypa"* (A a)
dt Rr—2 R/’

It can be expressed in terms of the equations given above when specific values are assigned to

the parameters n and D,,a™ 3. When n = 3, we obtain Eq. (4.17) for the growth due to mass
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110 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

transfer through the volume, and when n = 4, we obtain the equation for the growth governed
by diffusion along the grain boundaries. Let us consider the diffusive decomposition of a solid
solution with the mass transfer given by this general equation.

The approach developed above for the case of diffusive decomposition of a solid solu-
tion, under the condition where mass is transferred through the volume from one precipitate
to another, is obviously applicable to the diffusive decomposition of a solid solution with
other mechanisms of mass transfer as given by Eq. (4.87), the volume mass transfer be-
ing a special case of this equation. We introduce again v = (R/Rc;), Rer = (o/A), and
T =nlIn (Rer/Rero). Then we get

du™

Fz’y(7’)(u—1)—u27 n>2, (4.88)

(4.89)

The notations here are the same as those previously used.
By using the above-outlined approach we can easily obtain equations for the blocking
point

n
= ——. (4.90)
_ n"
Yo = nul ! = EE (4.91)

It follows from Eq. (4.91) that in the case when the above mass-transfer mechanisms are
operating, the blocking point can only be located in the interval 1 < ug < 2.

The time dependence of the critical size of a precipitate immediately follows from the
definition of v(r) (see Eq. (4.89)) as

Dn n—3
R = R, + 70[?1 t. (4.92)
0 u’(f)L

Solving the continuity equation and taking into consideration the law of conservation of mass
and the equation of motion using the above method, we get an equation for the distribution
function in the form

A
exp{—7 — ¢ (w)}, u < ug,
on(ur)=] W (4.93)
0, U 2 Ug,
r du’
b (1) = / _ (4.94)
) 9n (u )
where
d 1
—gn () = - = —— [y (w—1) —u"] , (4.95)
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4.1 Coarsening 111

¢ (u,7) = N (1) Py (u) (R) (4.96)
/Pn (u) udu
R=Ryl——. 4.97)

O/Pn (u) du

The values of the parameters, ug, Yo, Rer, Pr(u), and R, for different specific mass-transfer
mechanisms (for specific values of n) are summarized in Tables 4.1 and 4.2. There Kj is the
rate of chemical bond creation on the precipitate surface.

Table 4.1: Coarsening characteristics for different mass-transfer mechanisms: size parameters.

n ~_ R
n R, U= 7~
2 1200V 2 cos Kt 8
2| Reot §OkT 9
3 420n9V3e Dt
3| Baot 5%7 1
200V 2coo Dot
4 | Riy+ 220007 Loolol kB%O 0 1.03

Let us compare the results obtained for different mass-transfer mechanisms. It is evident
from Tables 4.1 and 4.2 that the time dependence of the growth rate of the precipitate de-
creases with increasing n as (R ~tl/ ") To illustrate this statement, for example, the growth
governed by diffusion along the grain boundaries (n = 4) is slower than growth due to diffu-
sional mass transfer through the volume (n = 3), although usually Dy > Dy holds. In fact,
there is no controversy here, as in the case of mass transfer along the grain boundary, a small
cross-sectional area of the boundary leads to a large resistance to diffusion.

The blocking point ug = [n/ (n — 1)] specifies the initial point of the range of sizes
where the distribution function is identically equal to zero in the zeroth-order approximation.
With increasing n, ug — 1, and a part of the distribution function to the right of the peak
becomes narrower. In the range of small values of vy — 0, the distribution function behaves
as P,,(u) ~ u™~1, and the width of the distribution function decreases with increasing n.

As is readily seen from Eq. (4.89), the growth rate d R/d¢ has its maximum at a precipitate
size, u = [(n — 1)/ (n — 2)]), located to the right of the blocking point uy. The relation
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112 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

Table 4.2: Coarsening characteristics for different mass-transfer mechanisms: distribution functions.

n P, (u)
24e3u exp {2 6 }
2 ~—d u<?
(2 - u)
0 u>uy =2
u? exp {_;}
5 e 23 pes
95/3 3 11/3 >3
(u+ 3)7/3 (— - u)
2
0 u > uy = %
2 1 4
3 exp{—— — arctan ! (M>}
A 4—-3u 62 (4/3) V2 <4
1 19/6 3 16\ 23712 U3
4{-—u uw? + —u+ —
3 3 3
0 U > Uy = %
between R, and R follows from the definition of v and % = (R/R..), where
uo
U= /uPn(u) du. (4.98)
0

Differentiating the integral equation of conservation of matter with respect to time (under the
assumption that P(u) and € vary slowly with time) and using Eq. (4.89) for the growth rate,
the following relation can be easily obtained:

u4—n

Rex

(4.99)

u37n ’

which leads to an equality of the first moments of the function P, (u) of the order of (4 —n)
and (3 — n), u*~" = u3~". Then for n = 3 we immediately getw = 1, i.e., R = R,. The

www.iran—m L\V‘dLLC(l m

Age Crwdivs 9 Olgils @ yo



4.1 Coarsening 113

values of u for different mass-transfer mechanisms are given in Table 4.1, and the distribution
function density P, (u) for different n is plotted in Figure 4.5.

B (u)

0.5

Figure 4.5: Dependence of the distribution function density P, (u) on w for different values of n.

4.1.6 Effects of Competition of Several Mass-Transfer Mechanisms

The theoretical description of the kinetics of diffusive decomposition of supersaturated solid
solutions involving only one mass-transfer mechanism has been developed in the previous sec-
tions. In a real situation, however, several such mechanisms can be involved simultaneously.
Thus, for example, a transfer of mass always occurs along the grain and block boundaries and
along the dislocation lines concurrently with volume diffusion [285]. All these mechanisms
operate concurrently for all new-phase precipitates. Due to these mechanisms only the precip-
itates with the fastest growth rate survive at a later stage of decomposition. The technique to
solve the equations determining diffusive decomposition when several mass-transfer mecha-
nisms are operating concurrently, discussed in the present section, has been developed for the
first time in [285].

Let us consider the process of decomposition in the intermediate region. Generally, the
growth rate of a spherical particle is specified by the equation

dR
=Y = (4.100)
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114 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

where J,, is the point defect flux density (per unit area of a macrodefect surface), which is
determined by the nth mass-transfer mechanism. The equations for the respective fluxes are
given above.

Suppose that a transfer of mass occurs under the concurrent operation of volume diffusion,
diffusion along the block boundaries and dislocations with the corresponding diffusivities Dy,
Dy, and Dy. Summing up the expressions given earlier for the respective flow densities, we
obtain

dR_ Dea(R) [, o
e (A R) : (4.101)
where
_ D (R)
Pt = 1 D (R) ) (KR (@102
B o ND, M (Dg)"?
PUY=Dolt+ g <2D0 W (@/R) 8Dy (1/a) )]’ (109

and NV and M are the numbers of block surfaces and dislocation lines that intersect the precip-
itate. When Ky — 00, Deg — Dy. When K — 0, then D(R) drops out from Eq. (4.101),
and we have a growth process determined by the rate of formation of the chemical bonds.

Since at sufficiently long times the mass transfer is attributable primarily to volume diffu-
sion mechanism, we choose dimensionless canonical variables 7 and u corresponding to the
canonical form of this mechanism:

R, o« R
T—3lnTrO, Rcr_ A, u = Rcr, (4104)
[0
Reo = A Ao = A(t)],—q - (4.105)
0

For the sake of clarity let us assume that the mass transfer is accomplished through volume
diffusion and through diffusion along the surface of the blocks and along the dislocation lines,
i.e., Ky — oo. Then, using the chosen variables, a complete set of equations can be written as
follows:

do  0(pg) _

ar T on O (4.106)

du _ _ 1 N BY _ .3

3 9w, gwT)=om {v(u 1) <1+u> u} (4.107)

1- %e‘Tﬁ = ke’ / fo () u? (v, 7) do, (4.108)
0

vo(7)
where fo(v) is the initial distribution function of the new-phase precipitates with respect
to the sizes v = (R/Re¢:), u (v, 7) is the solution of Eq. (4.105) with the initial condition
u(v,7)|,_y = v, Ay is the initial supersaturation,

47 RS, Dega dt
_ AT R, _ _ 3pa 2 4109
=30 " Dr. 7 YaRrz (4.109)
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4.1 Coarsening 115

and vo(7) is the root of the equation u(v,7) = 0; in other words, vo(7) is the initial size of
the precipitate dissolved by time 7.

The above-given detailed analysis shows that the functions + (7) and 3 () for large 7
should vary in such a way that, at each moment of time, the plot of g (u, 7) as a function of
u would lie below the u axis, and in the zeroth-order approximation should touch it at one
point. The form of the g (u, 7) function suggests that there is only one such point u = uy.
This tangency condition is given by the following equations:

g (u,T)

=0 — =0. 4.110
9 (U, )] ymy =0, ( 5 ) . (4.110)
Introducing the notation
_ p
v (u,7) = (7) 1+a , 4.111)
we obtain from the first equation
(uo, 7) uj 4.112)
T)= :
Y (Uo, ug — 17
and from the definition of «y (7),
3
ug 164 dt
—— =3Da |1+ — | —=. 4.113
UQ—I Oé( +UQ> ngr ( )

The second equation together with Eq. (4.112) is then reduced to
uo(3 — 2ug) = (Bug — 4)5. (4.114)

Solving this equation for ug, we obtain

3 9 \ 1/2

w=30-m+ (Fa-pf+2) @.115)
We can represent 3 as

Rcr

5(r)=50) 72, @.116)

and since (Rero/Rer) = e~7/3 holds also as 3 () =p(0) e~ /3 and
3 9 ) 1/2
wo =5 (1-8(0)e™%) + (E (1-80) ™) +23(0) 6‘7/3) . @

It can be seen from Eq. (4.115) that when 7 — 0 (8 — 0), then ug — 3/2. When § — oo,
we obtain from the same equation vy = 4/3. 8 — oo corresponds to the case D — 0. By
rewriting Eq. (4.114) in the form

(') (3 — QUO)

ﬁ: 311,074 ’

(4.118)
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116 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

we can see that ug has to have a value in the range (4/3 < ug < 3/2) because 3 is positive.
It can be shown that for all the values of ug located in the range (4/3 < ug < 3/2), the
derivative (dug/dr) > 0, i.e., the ug (7) function is an increasing function of 7. It varies from
its initial value ug(0), which is also in this range, to the value 3/2 when 7 — oc.

Equation (4.113) makes it possible to determine the dependence of the critical cluster
radius R, on time ¢. In fact, ug is a function of 3, and 3 is related to R, through Eq. (4.109).
Substituting for wug in Eq. (4.113) its expression through 3 (Eq. (4.115)), and expressing 3
through R, according to Eq. (4.109), we obtain a differential equation relating R, to t. The
solution of this equation, which has separable variables, yields a rather complex dependence
of R, on t in the form

27 R, 52
t= 6 oD (4.119)
1/2 7
p(0) (1+9x+x2> —x— = 3

1/2
14
<1+§x+x2> —x—g

When ¢ is large, we have

5(0) o

4
R} = 5 Dat, (4.120)

consistent with the volume diffusion mechanism. If 3(0) > 1, but the times are such that
B(0)(Rer,/Rer) > 1, we can easily obtain the dependence

3
3
RS — Ry, = (Z) Degaat, (4.121)

___ND. M (DDy)'?
2In(2b/Rery) — (81n(l/a))/?’

characteristic of the mass transfer along the block surfaces and dislocation lines.
The dependence of R, on ¢ is cumbersome because of the difficulty of expressing ug in

terms of (3 and using the exact relation (4.115). We introduce into Eq. (4.115) a new unknown
variable © = 3/2 — u, which can be expressed as

I} 2

Doff

(4.122)

x = . (4.123)
6(1+5) [1-5/(9(1+B)2))? +1
This equation can be approximated by a more simple expression
p
~ , 4.124

T+ 9) @129

which can be used for small and large values of 5. Then for 8 we obtain
3 1 g
= (1-=—L—. 4.125
=75 ( 91+ ﬁ) (4125)
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4.1 Coarsening 117

When 3 = 0, ug = 3/2, and when 5 — oo, ug = 3/4. We substitute ug, as expressed through
0, into Eq. (4.113) and replace R, in that equation by its expression through [ according to
Eq. (4.109). In this way, we obtain a differential equation that can be solved resulting in

9 4
:8(0) (ZL’+) 3 3
/d_x 8 :3_Dat( D ) . (4.126)

Z 3 73\ 2 D.
5 " (Jr+1)2<x+§) (z2+§x+§) et

When § <« 1, expressing ( in terms of R, we obtain

4
R} = §Doaf, (4.127)

characteristic of mass transfer through volume diffusion. When 3 > 1, we obtain

3
R — Ry, = (%) aDegat, (4.128)

characteristic of mass transfer through diffusion along the boundaries of blocks and disloca-
tions.

To determine the kinetics of motion of the blocking point in the general case, for an arbi-
trary number of mass-transfer mechanisms, we must determine its location when the growth
rate is described by Eq. (4.109). Introducing the reduced variable z = (u/uyg) instead of u,
the equation for (dz/dr) becomes universal and gets the form

n n—1
ii = (-1 (n-1)"1,  n>2 (4.129)
.

=1

Since the average radius R, as shown above, increases with time, the relative contribution
of the volume diffusion mechanism increases and becomes dominant at large times, and the
blocking point approaches 3/2. The growth rate of the precipitate is proportional to the sum
of the flow densities for the different mechanisms and each of them, in the dimensionless
coordinates, is analogous to the right-hand side of Eq. (4.129), i.e., has an essentially negative
value. Therefore, 1y monotonically approaches the point 3/2; in fact, ug is located in a much
narrower range depending on the initial conditions, either 1 < ug < (3/2) or (3/2) < ug < 2.
Since the variation of u is very small, its time derivative can be ignored in the zeroth-order
approximation when determining the characteristics of the continuity equation. The solution is
the same as that for the volume diffusion because 7 was chosen for this particular mechanism.
We get

A
———exp {—7 — ¥ (u,u0)}, u < ug
olur) = I (4.130)
0, u > Ug
u d ,
W, up) = / g(Tqu)' (4.131)

0
The growth rate of the precipitate determines g(u, ug).
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118 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

If mass transfer along the boundaries of the blocks and dislocations and the volume mass-
transfer mechanism are in operation, g(u, 1) can be determined from Eq. (4.108), and uo(7)
from Egs. (4.115) or (4.125). By determining the change in uo(7) more precisely, we obtain an
additional term in the expression for ¢(u, 7), which is close to unity because of the smallness
of the derivative (dug/d7).

We now determine the number of maxima in the distribution function with respect to the
variable u for a given 7 by solving the equation (d¢/du) = 0 with respect to u. If there is only
one mass-transfer mechanism, we have (dg/du) = 1. Because the left-hand side of the latter
equation decreases monotonically, it has only one time-independent root corresponding to one
maximum of the ¢ function. This result has a simple physical explanation: the distribution
peak is attributable to the presence of a single blocking point. For the same reason there is
only one maximum when several mass-transfer mechanisms are in operation: there is only one
blocking point, although in this case it is not stationary with respect to time. Several maxima
may be observed in the distribution function as a result of experimental preparation of the
samples. This is attributable to spatial inhomogeneity of the solutions investigated, which
results in a mass transfer in different regions via different mechanisms. A composite curve
with several maxima can be obtained by superimposing the corresponding distribution curves.
Apparently this was done in [322] where two peaks were observed.

Consider now the decomposition process determined by the formation rate of the chemical
bonds, and by mass transfer through the volume, to illustrate the evolution of the critical size
of precipitates and the distribution function in the intermediate asymptotic region. In this case,

UO(U() — 3)
2 — U

8= (4.132)

where 3 = [D/(KpnRe)]. Using the definition of y(7), we obtain, for the asymptotic critical
sizes, an equation in the dimensional variables

Bo

d (z —9/4)° 3 K\*

[ 1)~ ) = 50 () ¢ @13

B
where

_ L (B9 1 (B+9/4%B+9/2) 9 TB+9
f(B) = 37 (513 +662 (G137 +6467(5+3)4 (4.134)
1 B+3  B%2+128 433 B4
+i{ln 5t Bree T3Bar _4(ﬂ+3)4}’

and

f(Bo) = f(B)l =g, - (4.135)

The distribution function is finally given by
o(u,7) = N(7)P(u, uo)/ Rer, (4.136)
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4.1 Coarsening 119

where
3 i -t
N(r) = Aexp(-7) = ARL, A= Qo /P(u’uO)US wl @
I8
0
3U’U,8+d {U(2 — UO) + UO(2UO _ 3)}
1+b
(2 — UO)1+d (U + 2 g0u0> (UO _ u)2+c
__ 3Bug(up — 1) 3ug — 1 s
xexp{ Guw)wo—w " 3-wm [@ 2=US?
! , U > Ug.
Here
2 - 2 _y 5 -
3 — ug (3 — ug) (3 — uo)

By determining the motion of the blocking point uy we can easily obtain the evolution of the
critical size and the distribution function in the intermediate region.

When § — oo, ug = 2, and we immediately arrive at expressions for the critical size
and the distribution function that are characteristics of the decomposition determined by the
formation of chemical bonds (n = 2). When 8 — 0, up = 3/2 and the equations define
the decomposition process when the mass transfer is accomplished through volume diffusion
(n=3).

4.1.7 Asymptotic Stability of Solid Solutions

As already mentioned, the set of equations defining coarsening (diffusive decomposition) cor-
responds to the hydrodynamic approximation. The equations for the growth rate of particles
involve, in fact, only the average supersaturation. It means that local fluctuations of concen-
tration near a growing or dissolving particle are not taken into account. These fluctuations
result in fluctuations of the particle growth rate. This effect can be taken into account by the
use of a mechanism of collisions between particles which corresponds to the so-called kinetic
approximation in the basic equations [286]. It is this approximation that enables us to choose,
from all formal solutions, the only one which is stable against various disturbances. The term
collision refers here to either the direct fusion or diffusive interaction of particles separated by
a distance smaller than their size (in English literature this type of fusion process is commonly
called coalescence).

The mechanism by which an asymptotic distribution of particles with respect to their sizes
is established is largely influenced by the passage of the particles through the blocking point
ug = 3/2, moving with the hydrodynamic velocity v = —g(u, 7). As a result of these
collisions particles cross this point, thus changing the form of the equations. Therefore, the
collisions greatly affect the stable asymptotic distribution even when the total supersaturation
is low and the collisions are rare.
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120 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

We now introduce the relative variables & = r /R, in ordinary three-dimensional space.
If we put the origin of the coordinate system at a certain particle, then all other particles, while
approaching each other, will be moving toward the chosen particle in these variables (as the
coordinates of the particles remain unchanged whereas R.,(t) — 00). Most of the particles
will dissolve before reaching the center and without experiencing a collision.

The distribution function and the density of particles will be normalized to a unit of relative
volume as well. They are related to the previously used quantities  and n by the following
equations:

f=R3p=cp, (4.140)
N =R3n=c¢en. (4.141)

As shown above, in the asymptotic state, when all the excess volume is practically concen-
trated within the particles, n ~ €7, i.e., the density IV is constant. Accordingly, the probability
of an interparticle collision, in unit time in a unit of this relative volume, is time independent.
When two particles collide, the larger one absorbs the smaller one by diffusion and their total
volume remains unchanged. In fact, the volume is kept only approximately constant, as some
amount of matter can pass directly into the solution. By taking this effect into account, it will
obviously not result in considerable changes.

The dimensionless collision time is of the order of unity (7.,; /~ 1) because all the param-
eters in the equation defining the dissolution of a smaller particle,

3
(iii ~ B, (4.142)
.

and in the initial condition u|__, = ug ~ 1, are of the order of unity. Incorporation of colli-
sions into the system of equations defining coarsening affects only Eq. (4.19). An expression
corresponding to an ordinary collision integral appears on the right-hand side of Eq. (4.19).

Since the volume of particles is conserved during the collisions, we can conveniently use
the distribution function with argument z = u>. This distribution function is defined by the
following equation:

ke pdu = f(z,7)dz, (4.143)
where the factor
4 1
= —_—R? 4.144
TQ ( )

is introduced for convenience.
Before writing the collision integral it should be noted that the number of collisions of
particles, between v’ and v’ 4+ du’ in size, with particles of size u, in unit time, is given by

Vet

v=p(u,7)pu,7)——du, (4.145)

Tcol

where 7., is the collision time; Vog = W (z, 2')e™ RS, , is the effective volume within which
the particles’ centers can interact with other particles around them, and W (z, 2’) is the rel-
ative effective volume. Obviously, W(z, z") is of the order of the total relative volume of
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4.1 Coarsening 121

the particles; W(z,2') = z + 2’. It is evident that the effective volume increases asymptot-
ically along with the mean size of the particle. Since at long times ¢ ~ e~ " asymptotically,
f(z,7) = f(z) and the number of collisions can be written as
11 / n,_—T !
v=——f(2)W(z,2)f(z)e " d. (4.146)

52 Tcol

For sufficiently long times, the system of Eqgs. (4.17)—(4.19) rewritten for f(z) in the new
variable z with allowance for collisions assumes the following form:

P (fﬂ) f= Il -8 = (z”g - 1) v -z, (4.147)
/zf(z) dz =1, ~ = const, (4.148)
0
where
Iool = /W Vf(z =2 f(")d — f /sz " dz!
7T 7—col
0

(4.149)

The factor 1/2 in the first term is needed to avoid taking the collisions between two groups
of particles into account twice. It follows from the symmetry of W (z, z’), with respect to
interchanging arguments, that the number of particles decreases with the total volume held
constant as the collisions occur.

Since the collision integral I, is small, we can solve the resulting set of equations by
means of successive approximations. It should be stressed that from physical considerations
and from the analysis at the beginning of this section we should expect the value of ~ to
decrease as compared to g because of the collisions (since the particles crossing the point

= (3/2)3 due to the collisions should be able to leak back). Thus, in the zeroth-order
approximation, with  approaching 7, from below, the solution reads

(%) exp(—1), z < 29,
P(u,up) = (4.150)
(%) exp(—y — A), z > 2.

Here again

4 1/3 5
b= / =5 +3) on

3
/3 1/3‘4_;_111&. (4.151)
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122 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

The constant

Ae_ 3T Ay =9 —7 >0, 4.152)

(3Av/70)"*

reflects a rapid change of 1) in the region of transition from z < 2y to z > 2. The integral
/ Ax B~ dz over the transition region is equal to A.

It follows that when v = =g, fy reduces to zero along with all its derivatives, i.e., it
matches zero in the smoothest possible way,

(%) e—¢(2770)7 z < ZO)
fo(z,70) = (4.153)
0, z > 2o,

where the constant A is again specified by the normalization condition

z

/zf(z) dz = %, (4.154)

0

and « is determined by Eq. (4.144).
o
When v < 7, there is no stationary solution ( | zf(z) dz is logarithmically diverging).
0

When v > v, 8(2,7) = 0 at two points, z; and 22 (21 < 22), and, near z1, the function
fo(z,~) decreases as |z — z;|”, where b = (86/82\Z:z1)_1 —1. Whenvy — 0 < 1, fo =
|z — 21|, where ¢ = 2(37)"!(y — 70)"/2 — 1. A zeroth-order stationary solution can
therefore exist for v > 7y and is given by

(%) e*w(zﬁ"/ﬂ)’ z < 21,
fo(z,70) = (4.155)
0, Z> 2.

This solution is continuous together with its derivative at the point z = z;; however, it is
unstable against an appearance of the right-hand side in the equation.
In fact, in the next-order approximation the distribution function f(z) for v > o is

f(z)= % [const — /ICOl {fye¥ dz’] , (4.156)

and diverges at the point z5. This instability reflects the fact that the particles arriving at the
region z; < z < 29 are unable to leak back, and the volume of the particles in this region
would increase with time, which is impossible. Thus, fy(z, ) should be taken as the zeroth-
order approximation. Then, in this approximation,

Lo {f} = L {fo} = %Io(z), (4.157)
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4.1 Coarsening 123

% ZW(Z — 2,2 fo(z — 2) fo(2) d2’
fo(z,70) = —fo(2) ?W(z, 2) fo(2)d2, 7z < 229, (4.158)
0

07 z > 22’0.

Successive approximations involve incorporation of the right-hand part with simultaneous
refinement of the ~ value like

d']zlﬁn + fn = _Icol {fnfl} ) (4159)
/Zf(z) dz =1, Bn = ﬁ(za”)/n)- (4.160)
0

The solution satisfying Eq. (4.160) in the first-order approximation is eventually given by

300 1 a4, v,

Ir Tea© B° 2 < %0
fi(z) = 330 Tclo1 1,4 f To(+')e 20 < 2 < 220, (4.161)
0, z > 2z.
220
A= /Io(z’)ew dz’. (4.162)

Hence f(z) ~ Qo when z > 2, and the function varies smoothly in the vicinity of z = z.
The next-order approximation of the distribution function can be obtained by substituting the
above function into the collision integral. The distribution function can be calculated on any
interval of the z values with an arbitrary accuracy by successive iterations.

If we keep only the lowest order terms in @ for every interval nzg < z < (n + 1)z, the
resulting solution can be written as

F(2) = Q3™ e(2), (4.163)

where ¢(z) can be determined for every interval (¢(z) for the interval 0 < z < 2z is
given above in Eq. (4.138)). Physically, this g-dependence is attributable to the fact that the
particles of size z are created due to the collisions of the particles of smaller size, z = 21 + 2a.

It is evident from Eq. (4.162) that the distribution function for the interval z < zy con-
tributes primarily to the law of conservation of volume with an accuracy to terms of the order
of Q. Let us now derive A~ as a function of Qg with the same accuracy

_ 3 Qo oA
= Tcol A/ ﬂ (4.164)

www.iran—m LlV‘dLLC(l m

Age Crwdivs 9 Olgils @ yo



124 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

Hence, as Ay = 9 — v < 1, Qo < 1, and all the other factors are of the order of unity, we
obtain
Ay 372

Ay _ 3 4.165
7%  (InQo)? ( )

Thus, the allowance for collisions results in an insignificant variation of the distribution func-
tion defined by a term of the order of @)y in the vicinity of the z = z; point, and in the
appearance of an exponentially decreasing tail of the order of (¢ in the region beyond the
blocking point. Qualitatively, incorporation of collisions between pores enables us to choose
the only stable solution.

Finding the exact solution for a specific initial distribution is of great interest [286]. This
exact solution can be derived for the case when v = const = ~q at all times, i.e., when the
point u = ug = 3/2 is precisely a blocking point, and ¢(u, 7) is nonzero only for the interval
0 < u < ug. The initial distribution function in this case is

AP(R) (1 — Ce ¥(R)/3) R < 3/2,

o(u,0) = po(v) = (4.166)
0, R >3/2.

W =v=R P(R) = e {~u(R)} . (4.167)

g(u)
(4.168)
—1
3/2 3/2
3 3
C = @ / efw“i du / e*4w/3u7 du
Qo ) g(u) ) g(u)

The exact distribution function with respect to the absolute sizes that holds for all times is

fo(R.t) = ¢ (u,7(t)) R (t) (4.169)

R 3B 3\ s
_ AP<Rcr(t)> (1+70) |:1 C(]‘+’yo) € y R<3/2,

Its asymptotic behavior is, of course, similar to that obtained above.
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4.2 Transformation of an Arbitrary Initial Distribution Function into a Universal One 125

4.2 Rigorous Analysis of the Transformation of an
Arbitrary Initial Distribution Function into a
Universal One

4.2.1 Introduction

A theory of first-order phase transitions at its later stage (coarsening) has been developed
above in the zeroth-order approximation. A qualitative analysis of the equations defining the
process of coarsening (or solution diffusive decomposition) in this approximation suggested
that at sufficiently long times the contribution to the balance of matter from new-phase parti-
cles of sizes, exceeding the blocking point, was negligible. At the same time, it was shown
that the process is characterized by a definite self-consistent behavior of the supersaturation
with time.

As far as the growth rate of particles (expressed in relative sizes) is concerned, this be-
havior suggests that the growth rate touches the relative size axis at the blocking point, u,
from below, or, otherwise, both the rate and its derivative with respect to relative size vanish
at this point. This approximation unambiguously leads to a universal solution for the size
distribution function for u < ug which is independent of the initial conditions. In the region
where u > wuyg, the distribution function is zero in the zeroth-order approximation. This ap-
proximation, however, does not allow us to describe the evolution of the universal distribution
function with time and its relation to the original distribution. It is also impossible to obtain
the distribution function within and outside the region of the blocking point ug, as well as to
calculate more precisely the asymptotic behavior of supersaturation of the solution with time,
and to specify the time 7 at which we can start using asymptotic equations to describe the
time course of diffusive decomposition with a sufficient accuracy. All these values are closely
related to the form of the original distribution function, and their calculation requires the de-
velopment of a systematic approach to solving the set of equations that define the diffusive
decomposition of a supersaturated solution starting with some certain initial condition [342].

4.2.2 Canonical Form of the Basic System of Equations

We consider a single-component solid or liquid solution characterized by the supersaturation
A(t) = € — coo (Where € = ¢(t) is the average concentration of the solution at a given time
and ¢ is the equilibrium concentration at a planar boundary), and by the time-dependent size
distribution function f (R, t) of the new-phase particles. This distribution is normalized to unit
volume; f(R,t)dR = dN is the number of particles in unit volume within the size interval
(R,R+dR).

We introduce again the more convenient relative size of particles v = (R/Re(t)) and
reduced time

_ iy Ber®) A(0)
r=1In o) 31 NOL (4.170)
Re:(t) = ﬁ, 4.171)
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126 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

where o = (20wce, /kpT), o is the interfacial tension; w is the volume of an atom of the
dissolved component; kg is the Boltzmann constant, and 7 is the absolute temperature.

The distribution functions in absolute and relative variables are interrelated by an obvious
equation

f(R,t)dR = ¢(u, T) du. (4.172)

The introduction of the relative sizes of particles is of great importance because, as described
by these variables, from a certain time onward the particles dissolve in an orderly fashion,
and their distribution function at a given time is determined by the asymptotic behavior of the
initial distribution function.

Note that, if the particles contain excess material, a limited time interval can exist when
they partially dissolve temporarily increasing the supersaturation of the solution (this corre-
sponds to d7/dt < 0) with the supersaturation monotonically decreasing later on, d7/d¢ > 0.
The diffusive decomposition when d7/dt > 0 holds is discussed below. This is the case when
the supersaturation is sufficiently low, independent of the initial conditions which affect only
the time when d7/d¢ begins rising monotonically with time.

Furthermore, when A < 1, as shown above, the equilibrium concentration and the station-
ary diffusion flux have time to evolve at the boundaries of particles. Under these conditions,
the rate of particle growth due to the mass transfer through the volume is

dt R R
where D is the diffusion coefficient of the dissolved component. The growth rate in the
variables v and 7 is given by

dr _ D (A O‘), (4.173)

du 1
O = 3 D=1 -], (4.174)
dt  R3.(0) 3D (d 1\ )
M) =3 R & _¥<EF> =% (1=n), @17
2 . RL0)
w= U= (170

This form of the () function is characteristic of an orderly motion of the particles from right
to left, in the relative size variables, that corresponds to du/d7 < 0 for all u. Otherwise the
particles located to the right of the blocking point, ug = 3/2, in the size space will be unable
to pass into the region to the left of this point, and since R, () = a/A(t), when 7 — oo and
A — 0, the amount of the material contained in the particles would increase infinitely, which
is impossible. The leakage should proceed in such a way that the size distribution function
satisfying the condition of the balance of matter has time to evolve.

The equations defining coarsening are the continuity equation in the size space for a certain
mass-transfer mechanism together with the equation of balance of matter. In our case they
are the equations of the volume diffusion of a dissolved component and the conservation of
material present in the solution and in the particles:

Jdp 0 dul
=+ (wg) —0, 4.177)
¢lr—o = fo(v), ul,_g = . (4.178)
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4.2 Transformation of an Arbitrary Initial Distribution Function into a Universal One 127

When considering the coarsening as a late stage of diffusive decomposition, when A < 1,
we can ignore stochastic production of the new-phase particles with R > «//A thus setting the
right-hand side of the continuity equation equal to zero. This corresponds to the hydrodynamic
approximation. Its general solution is

ol 7) = folo(u, 7)) o, @179

where v = v(u, 7) is the characteristics of the equation

du _ y(u—1)—u®
dr 3u? ’

The balance of a dissolved component is given by the equation

ul_y =v. (4.180)

o

A
1— C;O /3 = ke /<pu7'u du = ke” /fo ,7) dv. (4.181)
0
0 v(0,7)

Here A(0) is the initial supersaturation, Q) is the total excess amount of the material, and

_ R3.(0)
= ( o ) (4.182)

Taking into account the form of v(7) and the fact that with v = g, du/dr has a second-order
zero at the point ug = 3/2, we can rewrite Eq. (4.180) as

% =—g(u,e*(r)) = *f {(u +3)(u — ug)® + %(u — 1) ()] . (4.183)
When 7 — o0, £2(7) — 0. The £2(7) function behaves in such a way because with increas-
ing 7 during an orderly motion from right to left, the increasingly distant parts of the initial
distribution function (which is a decreasing function, fo(v) < v=" (n > 4)) contribute to
the distribution function, at a given time, to the left of the blocking point, which primarily
contributes to the balance of material. Since, in fact, du/dr < 0, as the time increases, fewer
and fewer particles remain to the right of the blocking point so they have to leak more slowly
through the transformation region around the blocking point to absorb all the excess material.
Accordingly, the distribution function in relative sizes will narrow in a self-consistent manner.

The continuity equation possesses a general solution so the equation of the balance of
matter, Eq. (4.181), combined with the characteristics, Eq. (4.180), represents a nonlinear
equation for the £2(7) function and the characteristics v(u, 7) as well as the distribution func-
tion. Taking into account that ¢2(7) — 0 when 7 — oo, we can write the equation for the
characteristic as

_g(u)v u < Usg <’U,0,

d

= Bu—wl -4, w<u<u, (4.184)
—Q(U)7 u > up > ug,
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128 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

where
g(u) = g(u,0) = (3u) " (u + 3)(u — up)>. (4.185)

Here we isolated a region around the point ug where the function £2(7) contributes signifi-
cantly to the overall value. The boundaries of the transformation region, u; and us, obey the
obvious conditions

() (ur —up) P <1, X(r)(ue —up) < 1. (4.186)

Let us now introduce a function ¢ (u) for « > wug and u < wug, such that the difference
between its values at any two u points is equal to the time it takes to move from the larger u
value to the smaller,

_ du 4 5 _ U
w(u)—/w— 31n(u+3)+3ln\u uo|+uo_u. (4.187)
The function
[ du
Y(w) = / = bl) = (0 (4.188)

was derived previously only for u < ug. We can now write down the exact solution of the
continuity equation based on the form of its characteristics in these three regions,

ol 7) = Jolw(u, 7)) o0, (4,159

where v(u, 7), with 4 > uy, can be obtained from the solution of the equation for the charac-
teristics that is obeyed in this region at all times,

Y(v) =) +1, u>u, (4.190)
ov 0
o(u, 1) = folv(ur, 11 (u, T, Ul)))a_:la_:ja (4.191)
Y() =P(ur) + 1i(u, 7,u1),  uz <u<ug, (4.192)
v 01 O
o(u,7) = folv(ur, 71 (uz, 72(u, T, “2)’u1)))8_71-}18_2£’ (4.193)
V() = Y(ur) + 11 (ug, 72(u, 7, u2), u1),  u < ug. (4.194)

Here 77 = 71(u,7,u1) can be determined from the equation for the characteristics in the
region us < u < Uy

du 2 5 1,

— =—=(u—wup)” — =“(7 u

= —S-w)f - 5(r),
The function 75 = 75(u, T, ug) can be determined from the equation for the characteristics in
the region u < wuo and at once written for all times

o =T + P(u) — Y(ug). (4.196)

— . (4.195)

T=T1
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4.2 Transformation of an Arbitrary Initial Distribution Function into a Universal One 129

The function £2 (7), and accordingly the distribution function, can be evaluated, with sufficient
accuracy, from the moment when essentially all the excess material is concentrated in the
particles of size u < us.

From that time onward the balance of material which is present in excess over the thermal
equilibrium concentration is specified by

Fv@T/w(U)uS du = nef/fo(v)%ﬁ du = 1. (4.197)
0 0

Here we neglect the amount of material in the solution and in particles of size u > uy which
can be incorporated in the next-order approximation and which can introduce an exponentially
small correction in 7.

Substituting the solution for ¢ at u < us, Eq. (4.191), into Eq. (4.193), we get

Uz

5 / ¢ foo(r (1))

0

Ov 011 0Ty 4
—_— =1. 4.1
- uu du (4.198)

Using the explicit form of 75, Eq. (4.196), we have

't v u?
K/eTzfo(U(Tg))g—Tz exp [—(u) — ¥ (ug)] 9@ du = 1. (4.199)
0

Equation (4.199) is obeyed when

U2 -1

e fo(v( ))@ =(C = V) H/ew(“)u—?) du (4.200)
0 T2 87'2 = = / g(u) . .

This enables us to calculate the values of p(u, ), for u < us, that coincide with the above
given zeroth-order approximation

1) = folw) 22O _ ) OV

1
— Cetlu2) == (4201
8’7’1 87’2 ou ‘ ‘ ( )

972 g(u) g(u)

We find now for u < ws the relation of the integral of motion v = v(72) to the asymptotic
distribution function, taking into account that v(7) is the initial relative size of a particle
which takes the value u at the time 7, with w rising infinitely when 7 — oo.

To this end, let us integrate Eq. (4.200) over 7o multiplying it previously by e~

/ fo(v)dv = C’/e*T2 dry = Ce™ ™. (4.202)

v(T2)

Evaluating v(72) from Eq. (4.202) and using Eq. (4.194), we obtain the dependence 7, =
71(12) for u < ws. Physically, the integral 71 represents the time it takes a particle to attain
the point u; in the size space, provided that it is at the point u at the time 7.
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130 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

By letting u = uy and, accordingly, 7o = 7 we evaluate the time it takes a particle to arrive
at the boundary w4 of the transformation region, provided that the particle is at the opposite
boundary us at the time 7,

Y(v(r)) = 11(7) + P (u1). (4.203)

Equation (4.203) holds for those times which obey the condition v(7) > wu;. This equation
combined with the equation for the characteristics for the interval us < u < uy (Eq. (4.195))
enables us to deduce £2(7). The resulting equation can be conveniently written in a canonical
form upon substituting 2(u — ug)/3'/? — wand 7/3'/? — 7/. We obtain

du 9 9
- —e (1), ul

Equations (4.202) (where we should put 7o = 7), (4.203), and (4.204) provide a canonical
system for 2(7) and, accordingly, for the characteristics as well as for the distribution function
in the region u > us.

Generally, we should solve a Riccati-like equation (4.204) for an arbitrary function £2(7),
and then derive a functional equation for 2(7) from the boundary conditions. This procedure
cannot be approached analytically in the general case, although the asymptotic behavior of
physically meaningful initial distributions, decreasing with size, leads to the 7, = 71(7) de-
pendences that reduce the problem, with good accuracy, to ordinary differential equations. As
it is readily seen, the time it takes to cross the region us < u < uj, AT = 7 —71(7), increases
with 7, while £2(7) decreases monotonically with 7 increasing. This, in turn, suggests that
e2(1) = &%(7 + 70), where the parameter 7 is determined by the initial ( = 0) value of
Eop =¢ (T 0).

Equation (4.204) has a group of functional transformations preserving its general form.
Indeed, substituting

ey (1) = UL ul,_, = us. (4.204)

1 1
u—>§:u(7+7’0)—§—>n:§1n(T+To)—§=~-~, (4.205)
dr d
d | S 4.206
T_>T+To_>ln(7+7'0) a(r + 7o) ’ ( )
T4+10—In(r+7) > Inln(r+7)="-, (4.207)
we obtain

2(r+ 1) = 62 =*(1+ 1) — i — e =0 (In(r 4 70)) — i, etc.,  (4.208)
and the form of Eq. (4.204) remains unchanged. Note that the equations always involve the
ratios ﬁln(T + 79), etc., so the absolute magnitudes of the logarithms should be taken
in the region where they are negative.

Furthermore, when the initial distribution function is of infinite extent, the right-hand side
of Eq. (4.204) cannot be equal to zero at any values of u (or £, 7, etc.) as a result of these
transformations. Otherwise the leakage through the blocking point would cease, thus violating

the balance of matter. It suggests positivity of 2, 2, and [? or else, an obvious restriction on
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4.2 Transformation of an Arbitrary Initial Distribution Function into a Universal One 131

€2, 62, and [? from below. Given the dependence 71 = 71 (7), it is natural to attempt to find
a functional transformation that renders the right-hand side of Eq. (4.204) independent of or
weakly dependent on its argument over a certain time interval. After such a transformation
Eq. (4.204) can be easily solved.

4.2.3 Coarsening in the Case of Power-Dependent Initial Cluster Size
Distributions

In the case assumed now, we have fy(R) = AR™™, or using the relative variables, fo(v) =
Bv~", where B = AR_"(0). Equation (4.202) can be rearranged to give for v(7) > 1

B Y=l 74+InD
=|=—=e " = _ 4.2
v(7) [C’(nl)e ] exp{ — }, (4.209)
B
D=———_. 4.21
C(n—1) ( 0
Further substituting Eq. (4.210) into Eq. (4.203), we have
T+1InD
oo | TP = n) 4 vl @)

Since 7 (7) > 0, Eq. (4.211) holds for 7 > (n — 1) lnw — In D.
When 7 — 00, using the asymptotic function ¥)(v) = 3Inu — In D for v > 1, we obtain

3
n—1

n(r)=dr+p, d= <1, B=dlnD —luy). (4.212)

Since 7y and [ depend on the zero moment of time, it can be conveniently chosen to obey the
following relation:

f=-1-dm. (4.213)
Hence

71(7) 4+ 70 = d(T + 70), (4.214)
and Eq. (4.204) reads

du _ 2

4 = v e ), 4.215)

uly (T+m) =u,  ul g, =us. (4.216)
Introducing

§=u(r + ) . (4.217)

27
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132 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

we have
dg 2
=_£2_§ 4.218
din(7 + 79) ¢ ’ ( )
where
1
0 =(r4m) -7 (4.219)
1
& =u (T4 710) — 5 X when In(m +79) =In(7 +79) — In i (4.220)
1
& =ua(T 4+ 710) — 5 T when In(m + 79), T — 00. (4.221)
In order to obey these boundary conditions, § must be set equal to constant. Then
1 1
5 (arctan %2 — arctan %) =—1In ﬁ =1In 7 (4.222)
and for & — —o0, & — 0o we get
m 0
0= = 4.223
In(1/d) In((n—1)/3)’ ( )
2 = e (1 157) 4224
(1 +170) ) (1+46%) ( )
A more exact solution is given below.
We now return back to the previous variables via
1 1
T+ 710 — — (7 + 710), 1+ 70— —=(11 + 70), 4.225
0 \/§( 0) 1+ 7o \/§( 1+ 7o) ( )
. (u— o) (= wo)(r +70) — 5 (4226)
Uu— —(u—u u— —(u—u)(T+7) — = .
V3 0)s 3 0 0 9
Then
3
2 = 1+ 457) 4227
e“(t 4+ 70) 4(T+TO)2( + 467) ( )

Knowing £2(7), we can now obtain the integral 7y = 71 (£, 7) over the region up < u < uy,
and hence the distribution function. To finally perform this, we should replace &5 by ¢ in
Eq. (4.222) and make the substitution

In- —In T+ 7o

d 1 (fa T) + 7o (4228)

on the right-hand side since the boundary &; is now attained at the time 71 = 71 (&, 7), provided
that the £ point is attained at the time 7. It is obvious that 71 (&, 7) =7 — o0. It follows
that

‘f—)()o

T+ 7o 1 /7 I3
In—— =~ | - —arctan=> | . 4.22
e 5 (5 e ) 22
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4.2 Transformation of an Arbitrary Initial Distribution Function into a Universal One 133

Hence
(&,7)+ 10 = d¥ (T +70) P—l 1—£arctan§ (4.230)
TG, T T0 — T T0), = 2 N 5 s .
In(1/d)\? 2
d? 711( /4) (74 72)
or, 0m 0§ T 3
- FTILEs 5 5 (4.231)
ou 0¢ Ou - g(u—u )+ )_1 In(1/d)
3 AU 2 s
By using the asymptotically valid relations
P) =3y, vs1, B=(>)ce?, I _gmy=? (4.232)
- b b - d bl d’Tl - g - 37 *

and explicit expressions for 7y and D in the constant factor, we obtain from Eqs. (4.191) and
(4.192) for sufficiently large 7

o(u,7) = fo(v(ﬁ(i’T)))g(v(ﬁ(iﬁ)))%
B Or
= Sorew{-Jnen o))
= Cexp{—T}é%exp{—(d_q—l) (t+7)} , uz <u <y,
_Ly2 £
q= 5 (1 + - + arctan 5) . (4.233)

For w > wy, Egs. (4.189) and (4.190) with the asymptotic relation ¢ (v) = 3lnv, v > 1,
yield

p(u,7) = Bv‘”% = ngu) exp {—%W} . u > . (4.234)

Thus, Egs. (4.201), (4.233), and (4.234) define the size-distribution function over the
whole range of variation of u at sufficiently long times, 7 > 1. Clearly, for 7 = 0 and
u — oo we get ¢ (u,0) = Bu"™. The resulting solution in the region uy < u < u; connects
the solutions for u < us and u > u; smoothly, while the joining points asymptotically drop
out of the resulting solution. In fact we get

0 d
(l) ‘ - , (4.235)
0u ) ecersorne 9T2)
1
(5971) ‘ - . (4.236)
au =& ——00;T—00 g (u)
Substituting these results into Eq. (4.233) and using 7y in explicit form, we obtain
1
@ W, T)| s, = Cexp{—T} —, (4.237)
() =
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134 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

B 1 1
2 (’LL, T)|u~>u1 - § exp {_E (T + w (U’))} m
The mean particle size R(t), as shown above for the zeroth-order approximation and for
the mass-transfer mechanism under consideration, coincides with R, (¢). By using a more
exact value of ~y (¢) we obtain the supersaturation A(t) and critical radius R, (¢),

(4.238)

«Q
A(t) = , 4.239
92 —1
4 1+47r2(1nn;1>
R3(t)=R2.(0)+ -Dat{1— (4.240)
Ccr cr 9 2
4 [111 (1 + —j’;]g)(aof) + To}

Let us now find the time at which we can start using the above asymptotic equations. The
parameter 7y is a function of R.,(0) = a;/A( by definition and thus depends on the time zero
we choose. The explicit form of 7 can be deduced from Eq. (4.213) by substituting the values
of the constants B and C' into D. We get

_ 3(n-3) 1 3 A
T = — lnA(O) - n_4ln (a"—3 (n— 1)Q0> (4.241)

n—1
n—4

- () + S (),

where we take into account that

U2

TR0 [ e (0 ()

Ry

du ~ 1. (4.242)
g (u)

Although the original equations define €2 () for 7 >> 1, the initial conditions €2 (19) < 1
make these equations also valid for 7 > 0 since &2 (7 + 7¢) is a monotonic function of time
and the time zero is chosen arbitrarily.

For the time interval AT = [(1 — d) /d])]7, we have 7y (7) < 0. It means that the parti-
cles which are of size ug at the time 7 = 0 were of the size u; at the time 7 = — (1 — d) 7.
When moving the time zero (the 7 = 0 point), €97y becomes constant with time

_q1/2
3D (d 1\ ' "3n-3), 1
=1- = (== S Y 4.243
co7o [ Yor? <th3> ] n—4 A ( )
31/2 47T2 1/2
- .
2 (In[(n—1)/3])

Here minor terms are omitted as, when essentially all the excess material is concentrated inside
the particles, we have asymptotically
Plug) 1 1 Y(u)

1
<1, — <1, A(0) < Qo. (4.244)
7o Uz — Up T0 7o U1 — Uo 70
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4.2 Transformation of an Arbitrary Initial Distribution Function into a Universal One 135

The approach of a stationary value of this expression determines the time when we can
start using asymptotic equations. Any moment from that time on can be chosen as the time
zero (7 = 0) and all the dimensional variables can be related to the value of R, (0) = «/A(0)
at a given time. The boundary conditions in this case assume a canonical form (4.216). The
investigation of the distribution function in the region beyond the blocking point allows us to
evaluate n for the asymptotic distribution function and compare it with Eq. (4.243). It should
be noted that unless we choose the time zero in a specific way (Eq. (4.243)) but seek the
solution for an arbitrary time zero with the only constraint, £ (1) < 1, the resulting solution
for u > ug will coincide with Eq. (4.233) up to terms as small as §/dr — 0, 7 — oo, i.e.,
with the precision with which we evaluate the characteristics in this case.

The amount of excess material in the region around the blocking point and beyond it is
given by

Q' = ruiC =~ Qoexp {—¥(uz)} < Qo. (4.245)

Since our analysis holds true when the region around the blocking point where a universal
distribution is formed becomes asymptotically small (i.e., ¢ (u2) > 1) so Q' < 1, as it must.
Thus, the asymptotic time behavior of the distribution function is specified by Eqgs. (4.201),
(4.233), (4.234), and (4.240) when the initial size distribution function has a power-dependent
asymptotics.

4.2.4 Coarsening in the Case of Exponentially Decaying Initial
Cluster-Size Distributions

Generally we now have

R—-Ry\") 1
fO(R):Aexp{—( - °> }R—n, m >0, (4.246)

and in the relative variables

fo(v)=Bv "exp{— (v —1v9)" P™} , (4.247)
where
A AAT(0) CRa(0) o«
B=pmw= w0 P=a =AW (4.248)

Substituting fj (v) into Eq. (4.202), we get, for 7 > 1,

1 -1
v(T2) = vo + B {(TQ +InD)—- m In(7e + In D) (4.249)
1/m
—ﬁln(72+1nD+Pv0)} ,
m
BP”71
D= . 4.250
mC ( )
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136 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

Logarithmic terms are significant only when v (7) appears in the exponent and can be ne-
glected otherwise when 7 — 0.

By substituting Eq. (4.250) into Eq. (4.203) and again setting 4 = us and 7 = 7o, we
obtain at the upper boundary « = wu; of the transformation region

T (1) =9 (v (7)) =9 (u1), (4.251)

where v(7) is given by Eq. (4.250). In this case, no choice of the time zero enables us to
rearrange these conditions, at the boundaries of the transformation region, u; and us, to the
canonical form that yields an exact solution of the equation for the characteristics in this
region. The latter characteristics can be evaluated with sufficient accuracy only for specific
time intervals. To this end, Eq. (4.204) must be rearranged to make the right-hand side time
independent with sufficient accuracy for these intervals.

First we can use the solution of Eq. (4.222) by substituting 71 (7) into it from Eq. (4.251).
Then Eq. (4.218) where we replace 1/d by (7 + 70) /(71 (T) + 7o) leads to

—1
_ T+ 70 9 _ 31+ 452
o=m (ln g OF To) , e (t+ 1) = 1 7(7 n 70)2’ (4.252)
and
b
T =(§T)+T0= (%T) (T4 710), (4.253)
where
1 2 3
b = 5 (1 — ; arctan 5) . (4254)
Hence
dv_ om0
30 =9 5o =9() € du’ (4.255)
o O
o (u,7) = fo(v(r,6))g(v) a%a_i’ up <u < uy, (4.256)
and
ov
@ (u,7) = fo(v(u,7)) B (4.257)
Y)=1+Pu), u>u. (4.258)

In this case, the distribution function in the range of reduced cluster sizes u > wus is defined
completely by Egs. (4.252)—(4.258).
The derivative
or _ om 0¢

i~ (4.259)
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4.2 Transformation of an Arbitrary Initial Distribution Function into a Universal One 137

at this time interval is given by Eq. (4.231) where we replace 1/d by (7 + 79) / (11 (7) + 70).
Note that the distribution function in the region us < u < w1 always matches the distribution
function in the region u > wu; smoothly, and is independent of the accuracy in evaluating
the characteristics. This is due to the fact that the boundary condition, 7 (1,£) — 7 — o
when £ — oo (u — u1), is obeyed exactly and the characteristics to the left of the point uy
smoothly goes over into the characteristics to the right of w1, 7 (7,€) + % (u1) — 7+ ¥ (u)
when u — u;.

The requirement of smooth matching at the point us imposes a condition for the time
interval where our solution is acceptable. Substituting into Eq. (4.256), v(7, ) when v —
ug, & — —00, we get

(,O(U,T) = Ce—TMmP(T + th)(m—l)/mm,

. 4.260
@) T o M G20
Thus, our solution holds true when
_ + 7o
_ P InD (m—1)/m Tl(T)
F(r) = mP(r 4 D) () T
-1
~ g(v) (@) el et o, (4.261)
or T+ 79

where v(7)) is given by Eq. (4.250).

The accuracy of the above solution is independent of the initial distribution function but
is entirely determined by the accuracy in evaluating the characteristics. If we substitute the
approximate solution, Eq. (4.222), with 71 (7) as given by Eq. (4.251) into the equation for the
characteristics, this equation is accurate to a term which must be small for this interval,

_md 1— L
SIn(t +71) f(r)

This condition coincides closely with the requirement of Eq. (4.261). We evaluate this time
interval by noting that, for 7 > 1l and v > 1,

=~ 0. (4.262)

g(v) = % (4.263)
o\ o1 1 dlnv 1
— ~ = S 4.264
9(v) <87’) T4+71 3dn(r+7) 3’ ( )
1 T
G() =3mus g (4.265)
and ¢ (u1) = C, u3 ~ 2. Thus, the above solution is correct for the time
1 T To
—In—+ —=1. 4.266
o ( )

Let us now evaluate the parameter 7o. Equation (4.251) is obviously valid when 71 (7) > 0
or v (7) > wuy. The condition 71 (Tynin) = 0 0r v1 (Tmin) = w1 specifies the time interval mea-
sured from the chosen time zero, when the distribution function for the interval us < u < uy
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138 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

is determined by the distribution function for the interval u > w;. The parameter 7y can be
obtained from the following equation:

_171/2
& (ranin +70) = |1 3D /d 1
Tmin To) = Y dt A3
A(t)=A(0) exp{—Tmin (0)}
1/2
31/2 1 4 2
=2 - h+—" | (4.267)
2 Tmin + 70 ( Tmin+TO>
In —
To
At a sufficiently late stage
Tiin (Ao) = (P’U,Q — ’Uo)m —InD > 1. (4.268)

Thus, evaluation of 7y requires experimental measurement of the derivative (dA_3/ dﬁ)_1
at the time when A(t) = A(0)e~Tmin(A0) For the exponential asymptotic behavior of the
initial distribution function, in contrast to the distribution asymptotic to a power function,
Eq. (4.251), which is generally nonlinear, does not allow us to evaluate the time 71 (0) in the
past, when particles of size us had been of size u;. This is due to the fact that solutions of
Eqgs. (4.252)—(4.258) which are valid for 7 > 7,;, change considerably with time and thus
cannot be extended to the region 7 < Tyin-

For m~!In[r/(pm)] > 1, InlnT ~ 1, we perform another functional rearrangement of
Eq. (4.218) by changing to a new argument (time scale) Inln (7 + 7p) and a new function
n=~E&In (7 + 79) — (1/2). Then we obtain

dn

a2 g2
Ao (717 " (4.269)
2 2 o 1 9 1

P= | (+70) (T +70) — 7| (In(r+70) -1, (4.270)
Mg oo = =00, Nlpr—g oe = OO (4.271)

For the time interval when [? ~ const, the solution of Eq. (4.267) coincides with the obtained
solution (Eq. (4.222)), in which In (7 + 79) /In (71 (7) + 70) should be substituted for 1/d

_ Ly Grm) 77
= [m I (r1 () + TO)] (4.272)
where 7y (7) is given by Eq. (4.251),
1 C
In (71 (§,7) +70) = {%] In (7 +70), (4.273)

1 2
c= 3 (l—warc‘can;}>7
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3 1 14412 31
2(rim) =" AT et mrs1 @27
V) 2
4(1+1) (In (7 4+ 79))

Inserting the time 7 (£, 7) from Eq. (4.273) into Egs. (4.256) and (4.258), we obtain the
distribution function. At such long times we can assume 71 (7) =~ (3/m)In(7/P™) and
neglect 7p. As already mentioned, the matching of the distribution functions in the region u
is smooth. In the region u = usy, n — —o0, substitution of Eq. (4.273) into Eq. (4.256) yields

o (u,7) = Ce~mPrm=D/mg (4) B = Ce*Tg (1u) InlnT, (4.275)
n~urlnr, (4.276)
v 7_l/m,
_v_T/™ 4.2
ory Ol ondoé 3 1 Inlnt (4.278)

oy ! on 0cou  mg(u) T
It follows that the obtained solution holds for the time interval when Inln7 ~ 1.
Equation (4.267) for the characteristics is accurate to a small term:

d T 1
dlnlnr (7) = e =0 (4.279)

Thus, for the time interval Inln7 ~ 1 the accuracy in evaluating the distribution function for
u > ug depends only on the accuracy in evaluating the characteristics, as it must be the case.
For v > w4 the distribution function

o (u,7) ~exp{—mexp[r + ¥ (u)]} (4.280)

is very small and does not contribute to the balance of matter significantly. Note that if the
initial size distribution function has an end point, i.e., equal to zero when R > RO, we can
easily evaluate the time when it transforms into an universal distribution function, and £2(7) =
0. This takes place when

RY RY 3
=—A@lt)=-. 4.281
R, « (*) 2 (4.281)

From this time on, under these initial conditions, we obtain

ﬁe*w(“)’ﬂ 0 <u < ug,
o(u,7) = (4.282)
Oa u 2 Uug,
uQ -1
e u3
A= m/e—W“)—du . (4.283)
g(u)
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140 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

Let us solve Eq. (4.218) with higher accuracy. Introducing
x=In(r+7), y=1In(1"+70) (4.284)

for convenience, we can rewrite Eq. (4.218) as

dg 2 <2
L __ ey 4.285
m 3 ), (4.285)
- 1
Elymn(r)mtnirs () 470 = 116" = 2, (4.286)
) 1
§|y:x:1n(r+7’o) = |u2| e’ — 9 (4.287)

Equation (4.287) with its boundary conditions is a canonical equation since it holds true for
any mass-transfer mechanism and any initial distribution function. They affect only the form
of n(x). If fo = AR™™ (n > 4), then n(z) = x — xo, o = In[(n — 1)/3], and, accordingly,
(x — ) <y <z

We shall seek the solution of Eq. (4.287) in the form

& =dpcot[do(y —z+Y(z,y))], (4.288)
5o = xl —r<boly—z+Pa,y)] <0, | <oo. (4.289)
0
Substitution into Eq. (4.287) leads to
dy
= 4.2
TR (4:290)
fly) =1-46%/53. (4.291)
For sufficiently large = the boundary conditions are
1
V@Y ey = u—le*(”‘/’*m +0 (e72), (4.292)
1 —x —2x
V(@Y = Tl Tt O (e7). (4.293)

Equation (4.291) can be written in an integral form

y
1
U(z,y) = u—le*(g“"”o) — / f@)sin? [0o(y — x + ¥ (x,y))] dy’. (4.294)

Using the second boundary condition, we obtain
Yy
/ () sin® [6o(y — x + ¥(z,9))]dy = e, (4.295)
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1 1
o (—emo + —) > 0. (4.296)
U1 |U2|

Equations (4.294) and (4.296) represent a complete system of equations for f(y) and ¢ (x, y).
Let us replace z = y — z, and f(y) = A(y)e Y. Then

1
V(z42,2) = —e (@7T0) (4.297)
Uy

—e " / A(Z + z)e % sin® [6o(2/Y(2 + z,2))] A7,

—xo

0
/ A(Z + x)e Zsin? [0o(2 + (2 + x,2))]d2 = a. (4.298)

2o
It follows from Eq. (4.298) that if A has a fixed sign (that is physically meaningful), it is
limited and, according to Eq. (4.297), ¥ ~ e~* — 0 when z — oco. Then we can neglect ¢

in the argument of sin? 5o (2’ + v)] & sin?(Jy2’) with an accuracy to the next-order terms in
e~ *. We obtain

2 €T
() = (L—Ae™), A= ——— (1 n 47T2) , (4.299)
1 1 To \ !
I ) _ L —(z—=0) o
Y(y, z) e +A{ 5¢ (1+ 47r2) (4.300)
1 _ 2n(y—x) 2w . 2w(y—x) o \ !
— eV -1 TV M gin ) (1 2L .
2¢ [ * (COS To o o ( + 47r2>

These equations obviously hold true for Ae™¥ < 1, and it is physically clear that the smaller
g (n — 4), the larger the amount of material in the tail of the distribution function and,
accordingly, the later diffusive decomposition begins.

In a more exact way, Eq. (4.218) can be solved for an exponentially decreasing tail of
the distribution function in a similar way by substituting © — 7(x) in the expression for &,
replacing ¢ by 7/y —n(y) and taking into account slow variations of this function with respect
to 7 on different intervals.

4.2.5 Generalizations

The above solutions obtained for mass transfer via volume diffusion can be easily general-
ized to other mass-transfer mechanisms. The basic canonical system of equations remains
unchanged, however, with the only difference which resides in the form of the function ¢ (u),
determined by the specific mass-transfer mechanism. An iterative procedure can be developed
to evaluate the corrections to these solutions.

The first correction to the characteristics can be derived by taking into account the overall
amount of material in the solid solution, A ~ e~7/3, and in the tail of the distribution function
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142 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

for u > wg, as evaluated in the zeroth-order approximation. This leads to the substitution
e™™ — e (14 O(e~7/3)). To incorporate the correction v, the integrand in Eq. (4.197) of
the balance of matter should be rewritten as

fo (vo + 0v) = fo (vo) + Mév . (4.301)

dUO

By retaining the terms of the next order of smallness, it can be easily shown that the corrections
to the characteristics and hence to €2 (1) are of the order of O (6’7/ 3) i.e., exponentially
small.

In general, further refinement of the “hydrodynamic” approximation does not make much
sense because of the contribution of the local fluctuations of concentration near the particles,
which increases with time. These fluctuations are primarily attributable to direct diffusive in-
teraction (collisions) between the new-phase particles that may be located at a distance smaller
than their size. Allowance for this interaction, as shown above, gives rise to a supplementary
tail of the distribution function, in the region « > wuo which is mainly determined by the dis-
tribution function in the region u < g, and makes &2 (1) = A/~ tend to a constant value,
€2 (1) ~ (InQo) 2. This result suggests that the universal distribution function evolves in the
region u < ug in the hydrodynamic mode, while the collisions between particles in the region
u < ug contribute primarily to the value of the tail of the distribution function in the region
u > ug. The contribution of the collisions apparently becomes significant once €2 (7), as eval-
uated in the hydrodynamic approximation, attains a value of the order of (In Qo)_Q. Note that
the distribution function has a peak at a point to the left of the point of lowest velocity. The
reason is that the distribution function decreases in the region « > wug in any approximation.
Upon leaking through the blocking point region, ug, it has time to take the maximum value
which is practically independent of the initial conditions with 7 — oo only at some distance
from ug.

The above results can be easily extended to incorporate sources of a dissolved component.
The expression for the growth rate of the new-phase particles is independent of the presence
of sources, while in the equation of the balance of matter we have e” — e™", where the power
n < 1 depends on the strength of the source of a component. Depending on the particular
mass-transfer mechanism, n is constrained from below to ensure A (¢) — 0 with ¢ — oo, thus
enabling the universal distribution function to evolve for any initial distribution.

These results can also be extended to the multicomponent, multiphase case. For such
systems in their later stages, the continuity equations, as shown in the next section, separate
into independent equations for each phase, to an exponential accuracy. Only the algebraic
equations defining the regions of coexistence of phases and the distribution of components
over phases remain involved. The corrections to the concentration of a component in such
systems are clearly determined by the initial distribution functions of the phases involving this
component. These problems will be analyzed in the subsequent sections.
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4.3 Theory of Diffusive Decomposition of Multicomponent Solutions 143

4.3 Theory of Diffusive Decomposition of Multicomponent
Solutions

4.3.1 Introduction

The diffusive decomposition and coarsening of multicomponent solid solutions represents
the most general case of the processes considered. This situation is of greatest interest for
practical purposes, as most of the materials under consideration are in fact supersaturated
multicomponent solid solutions, where various phases can precipitate under certain operating
conditions, thus determining the properties of such materials. A theory describing the evo-
lution of the precipitates of these phases has been developed in [279-283]. As we shall see
below, the quasithermodynamic equilibrium conditions produce the most efficient distribution
of the components among the phases and determine the regions of their coexistence, while the
surface tension leads in the zeroth-order approximation to an universal distribution of particle
sizes in the coexistent phases (here ./ R’ < 1, where R’ is the average size of the particles
of the sth phase, and o® is proportional to the surface tension o® of the sth phase).

The growth of precipitates at the early stage of diffusive decomposition depends on the
history of the sample. At sufficiently long times it is independent of the initial size distribu-
tion function for the precipitates, which, because of the nonlinear processes proceeding in the
system, becomes universal in the zeroth-order approximation. The corrections, which depend
on the initial conditions, diminish with increasing duration of the decomposition process. The
initial conditions also determine the time for establishing the asymptotic behavior. The lat-
ter behavior can be determined by comparing the theoretical and experimental distribution
functions, or from the saturation time of any material property sensitive to the impurity con-
centration in the solid solution (using dilatometry, and measuring lattice parameters, electrical
resistance, etc.).

Let us examine an N-component solid solution in which % different phases (chemical
compounds) can be formed from the components contained in the solution as a consequence
of decomposition. The coexistence of different phases in a matrix is determined by the ratios
of the initial concentrations of the components producing the given phases and by the ther-
modynamic efficiency of these phases. Of all the chemical compounds occurring in a given
multicomponent system, only those precipitates can be stable whose constituents are present
in the solution in a concentration corresponding to a certain supersaturation. This necessary
condition for decomposition, at low concentration of the components (c¢? < 1) when the law
of mass action applies to the chemical reactions, can be written as

0y
> vip =In % >0, (4.302)

where ¢? is the initial concentration of the ith component in the solid solution, K3 is the
equilibrium constant of the sth phase chemical reaction at the precipitate surface, and v}
and g are respectively the stoichiometric coefficient and the chemical potential of the ith
component of the sth phase.

If the phases formed in the system do not have any common components, the condition
given by Eq. (4.302) is sufficient, since the growth of precipitates of the different phases occurs
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144 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

independently. If, however, the phases share common components, we notice that, although
the solution initially has been supersaturated with respect to some phases, the material can be
redistributed during decomposition and the solution in the phases will no longer be saturated.
Therefore, in this case Eq. (4.302) is merely a necessary condition for selecting the phases
whose precipitates are capable of further growth during diffusive decomposition.

4.3.2 Basic Equations and Their Solution

The set of equations which describes the diffusive decomposition or coarsening process, in
an N-component system producing k phases of stoichiometric composition, including pure
solute components and compounds with the same material as that of the matrix, consists
of k continuity equations (Eq (4.303)), plus N laws of conservation of the components
(Eq. (4.304)) plus ) n° — k stoichiometric ratios for the diffusion flux J;, (Eq. (4.305)),
and plus & laws of mass action (Eq. (4.306)):

afs o

Y (55 — 4.

Lt o (foR) =0, (4.303)

dEi 47 7 2

de; A [ ep2 s qp - 4304
EX} 0

Js s

fir _ Jim (4.305)

v 7

k s

1 ()" = K3 (4.306)

K2

Here f®(R,t) is the precipitate size distribution function of the sth chemical compound
(phase) in the matrix; ZS’ , denotes summation over all the phases containing the ¢th com-
ponent; ¢;(t) is the average concentration of the ith component in the solid solution at a given
time; ¢; p is the equilibrium concentration of the ith component at the surface of a particle of
the sth phase; ng is the number of matrix sites per unit volume; K% is the equilibrium constant
of the sth chemical reaction at the surface of a particle of the radius R, and n® is the number
of components in the sth phase.

Since the supersaturation A; of the components at a later stage of decomposition is much
less than unity, we can, similar to single-component solutions, use the expressions for quasi-
stationary diffusion flux J7 , of atoms of the ith component to the particles of the sth phase,
normalized per unit surface area of the particles of radius R, which were obtained in the ap-
proximation of a self-consistent diffusion field:

Tip = D go (@ —cp) (4.307)

Here D, is the diffusion coefficient of the ith component in the matrix. In this case, the ratio
of the characteristic time for establishing the diffusion flux for the slowest moving component
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Tait ~ Ri/(6D;) to that for the change in the precipitate size,

R; (de -1 E?
Teh ~ o < dr) ~ DAy (4.308)

is small 7qi¢/7ch ~ A; < 1. The smallness of the parameter A; makes it possible to use the
quasistationary conditions at the surface of the precipitates. Since A; — 0, the law of mass
action can be used at a later stage, and the interaction of the components in the solution can
be ignored. Since

G p=0Coexp{0ir}, (4.309)

(K™ = (Ko )™ exp {%} =T (cn)"™ (4.310)

%

¢ioo) " TLexp {Piop ) =[] (o)™ exp{ > Pidi n
)" oo (P25}  TT (6" 0] 3 35,
then

S

[T (c)™ = ()™, ZPf th= = @311)

i

205V" —
Ne=> v, o= N Vi => PV (4.312)
- ,
Here V" is the mean volume per atom of the compound; V;° is the atomic volume of the ith
component in the sth phase; ¢ = 1,2, ... are the numbers of the components comprising the
given phase, and P = v /N are the normalized stoichiometric coefficients.
Let us consider the following equation:

PP no Ci R
- Ps S o i 431
ZDC R i [Z<c§, ) z<c§ (4.313)

1,00

= A A5 —
Here,
L > (Fr) 4314)
Ds B ; Dicf,oo’ .
and
Ci — Cf oo
AT=> P i (4.315)
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is a time-dependent function representing the effective supersaturation at a planar surface of
the compound, and

¥ —ZPé Chr ~ oo =S P (exp {550} - 1) (4.316)

’L()O

is the deviation of the effective equilibrium concentration at the surface of a compound of
curvature radius R from that at a planar interface (R — o0). Using the above equation and
Eq. (4.305) we obtain

s (dR\® Z”S DV'ng
R (E> T4 Vidin=—f— (&"=7) . 317
PsD*
€= o = oA, (4.318)
PsD*
ciR_Cf,oo: ZD ’YS~ (4319)

For sufficiently large R’ > a® and, accordingly, 67 p < 1, we have

S

yS = Z Pigip=— (4.320)
The precipitate growth rate is finally given by
dR\?® stsno [o'sd
— | =— A" —— ). 4.321
(&) =% (> %) wa

Using Eq. (4.319), and integrating Eq. (4.304) with the help of Eq. (4.303), we can easily
rearrange the law of conservation of matter (Eq. (4.304)) in the following manner:

Ps 4
Spry= = ;T / FRYAR = Q; — @ (4.322)
" ) no
Here
P4 7
Q; = il / fSR*AR (4.323)
0

is the total amount of the material of the th component at zero time, and

1 4rm T
JS = ——— / SR3dR 4324
0o 3 f ( )

is the relative number of molecules of the sth phase in unit volume of the precipitate. The
law of conservation of matter as given by Eq. (4.322) is a natural extension of the law of
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conservation for a single-component solution. Using A® and substituting ¢; from Eq. (4.322),
we get

As — Z Cf)is Ql _ Z Pis/Js/ _ C;OO 7 (4325)
EN i,00 si!

A%+ Z ZPS =3 Cfis (@i — i) - (4.326)
S,1 s’ ER AT

Introducing dimensionless variables, as in the case of a single-component solution, and
analyzing the law of conservation of matter as we have done above in Section 4.2, we can

show that a solution exists when A*® approaches zero as t~1/3:
4DVt
sV ng
AS= |2 ——— 4.327
5 (a2 ( )

Since A® > 0 and J* > 0, the values of ¢;, ¢j ., and J* which are generally functions of
time, approach certain limiting values when the time is large, t — oo, and A®* — 0. The sys-
tem behaves in this manner because of its tendency to achieve thermodynamic equilibrium.
Thus, in the zero-order approximation (with accuracy to terms of the order of t~'/3) the sys-
tem of Egs. (4.303)—(4.306) can be separated asymptotically into k independent subsystems.
The above statement is a very important implication of the theory, as a complicated system of
nonlinear differential equations, in the canonical variables, can be rearranged into a set of in-
dependent equations, defining the distribution functions and the parameters of decomposition
of all the precipitated phases to a time-asymptotic accuracy.

The continuity equation (4.303), the law of size variation of precipitates of the sth
phase, Eq. (4.321), and the tendency of the volume of the precipitates of a given phase to
achieve a constant value, J* Vv’ ngo, which is determined by the law of conservation of matter
(Eq. (4.322)), comprise k complete, independent sets of equations, corresponding to the set of
equations for a single-component solution that has been obtained and analyzed in detail above
in Section 4.2. Thus, the above analysis applies to each independent subsystem and makes it
possible to write the asymptotic solutions of the given set of equations for the sth phase, after
making the appropriate substitution. We get

D — D*V’ny, Qo — J*V’ny, a—a® = , (4.328)
kT
aS
R = — 4329
k As7 ( )
s p(u®,7°)  N°(@t)P(u®)
Rit)="— 72— L , (4.330)
AR, t) = =
34 s_ 3
W’ 0 <u® < 9
Ps(uf) = (4.331)
s_ R <3
0, u" = ? > bR
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No(t) = 0222110 l/ >, (4.332)
(%)

—s\3 3 a’ 3 3 4 .

(R> = (Ra) = (E) = (Re:(0)” + 5DV noa’t. (4.333)

This result is an important implication of the theory that predicts the formation of a universal
(in the appropriate relative variables, u° = R/RS) time-asymptotic size distribution, for the
precipitates of arbitrary phases produced during the diffusive decomposition of multicompo-
nent solid solutions. Physically, this asymptotic behavior is clear: interfacial tension gives
rise to a universal (in the appropriate variables) distribution function, which is the same for
all the coexistent phases irrespective of their initial distributions. Thus, in the most general
case of a multicomponent dispersed system there exists to a good accuracy a unique (in the
appropriate variables) stable asymptotic state achieved by the system upon forgetting the ini-
tial distribution. The evolution of the mean sizes of the precipitates from all the phases also
obeys a universal “t!/3-law,” which defines the coarsening (decomposition) controlled by the
volume diffusion of the components.

Although the general solution is the same, the specific solution depends on the set of
(N +>_,n® + k) limiting parameters ¢;, ¢; .., and J°. They can be evaluated from the lim-
iting form of Egs. (4.305), (4.312), and (4.322 ), as R — oo. An additional set of equations
(with accuracy to terms of the order of t1/3) should use the condition for existence of a chem-
ical solution A® = 0, which actually replaces, in the later stage, the initial conditions for the
size distribution function of the phases. It follows from Eq. (4.319) that asymptotically as
A% — 0,

PsDs
G—cl =t A0, (4.334)
) Dz
Clloo = Cineg = Clg =" =% =T (4.335)

Physically, this condition is clear: only the precipitates of the chemical compounds, which
have the same equilibrium concentration of the common components, can coexist. Thus,
asymptotically the concentrations of the components at the surfaces of the precipitates are
independent of the specific kind of the phase. The kinetic condition for the coexistence of
phases, which is asymptotic with respect to time, corresponds during diffusive decomposi-
tion to the thermodynamic condition for the coexistence of phases. In fact, we obtain from
Eq. (4.335) the equality of the chemical potentials of the ¢th component in the coexistent
phases (uj = ¢; + kpT'Inc; ).

Introducing x; = ¢;/Q;, and taking into account Eq. (4.319), we obtain from Egs. (4.312)
and (4.322) a set of equations for the asymptotic time behavior of the limiting parameters x;
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and J*®
ps F
PsDsAS\ " 1 oo PSDSA®
1:[(331'— D;Q; ) :1:[ I_Q;Pij - D;Q;
KN
B R (4.336)
IL @
These equations, with accuracy to terms (A®)?, are
pr 1 L PSDSAS
)5 = 1— — ) el I (4.337)
H( ) H Qi Z D;Q;

i i s’

The constant values of the limiting parameters x; and J° can be obtained, with accuracy to
(A*%)2, by solving the system of equations (4.337).

Physically, it is clear that the roots x; and J° of the system of equations (4.337) must
satisfy the inequalities 0 < z; < 1 and J® > 0 (x; > 1 indicates that the final quantity of
the material in the solution is greater than the given quantity). It can easily be shown that
this set of roots is unique. In fact, the left-hand side of Eq. (4.337) involves polynomials
which are monotonically varying functions in the region of the physical roots. In this region,
in the J*® coordinates, they form open hypersurfaces with a curvature of the same sign, and
their intersection gives a unique set of physical roots. If the concentration of some of the
components is higher than their solubility limit in the matrix, the precipitates of these pure
components may be the coexistent phases, and the chemical reaction constant coincides with
the solubility limit of these components ¢;; here v; = 1 and v;,; = 0. This chemical reaction
corresponds to the equation ¢; o = €;.

Note that all the phases for which the chemical solution is supersaturated should be taken
into account in Eq. (4.337). The solution of these equations automatically selects the phases
which asymptotically survive as a result of the competitive growth during coarsening. If,
in Eq. (4.337), J° < 0 for some roots, they should be set equal to zero, and the laws of
mass action (i.e., relevant equations in Egs. (4.337)) should be ignored, because the solution
becomes unsaturated for these phases during the decomposition process. If, however, it turns
out that z; > 1, then the solid solution is unsaturated for all the chemical reactions containing
the ¢th component. We can see from Eq. (4.337) that all the J*¢’s should be set equal to zero
then, the laws of mass action should be ignored and the system of equations (4.337) should be
solved again after reducing the number of equations by S;. If the system of equations (4.337)
is separated into several subsystems without common components, this indicates that for them
the decomposition process occurs independently.

It should be emphasized that the main conclusions of the theory of diffusive decomposition
of multicomponent solid solutions in the later stage imply the formation of a universal distri-
bution function; the separation of the complete system of equations describing this process
into k similar subsystems of equations for the size distribution functions of each phase, and
k sets of algebraic equations for determining the limiting parameters contained in these func-
tions, are insensitive to the mass-transfer mechanism and are determined solely by the laws of
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conservation. The specific mechanism of atomic mass transfer, i.e., (AR/d¢)*, affects only the
distribution function. The Brownian motion and particle coagulation, precipitation, and the
random appearance of particles at small distances can change the equation for the distribution
function. These variations can be taken into account by using the collision integral, which cor-
responds to incorporating the corrections for the volume fractions of the precipitates. Since
the basic system of equations is separated into independent subsystems for each phase, all the
conclusions, concerning the effect of fluctuations of the precipitate positions, and of their dif-
fusive interactions on the stability of the universal distribution function, that have been drawn
from the analysis of single-component solutions are applicable to multicomponent systems as
well.

The set of equations (4.337) relates the external parameters, i.e., the parameters deter-
mined by the external conditions, with the internal, adjusting parameters. In the case under
consideration, (); and K3 are the external parameters, and ¢; and J° are the internal param-
eters. In the general case, the external conditions divide the limiting parameters into external
and internal parameters. If the concentration of a given component is constant, it is considered
as an external parameter, and the corresponding relative quantity of the material is the internal
parameter to be determined from Eqgs. (4.337). Note that since the formation of compounds
with the matrix material during the decomposition process is analogous to the production of a
pure component, we can formally set D, — 00 in the expressions obtained and consider
the matrix concentration specified.

As an example, we derive in an explicit form some equations for the simplest case of dif-
fusive decomposition with the formation of the stoichiometric precipitates A(Vll)Al(,? dispersed
in the matrix M (see also Chapter 8). This is often the case for materials of practical impor-
tance, containing such inclusions as oxides, carbides, nitrides, etc. In this case, the system of
equations (4.337) assumes the form

P; . Vi
1—a;=—J =1,2), Pp=— 4.338
v Qi (i ) N ( )
K;C{(lq-i-l/‘z) _
aral? = — 5 = K. (4.339)
1 2

Note that the inequality Ko < 1 must always be obeyed; otherwise the solution is unsatu-
rated. An analytical solution, even of this simple system, is generally impossible. We shall
find the solution for some practical limiting cases which are of great interest physically. In
specific cases, the systems of equations (4.338) and (4.339) can be solved with a computer to
any desired accuracy.

1. Let us first consider a weakly supersaturated solution (1 — z; < 1). By expanding
Eqgs. (4.338) and (4.339) in the small parameter (P;/Q;).J we obtain

_ (P2 PE\! _ \ P, (P? P\
J:(l—Koo) (—1 —2) , xizl—(l—Km)—l<—l+—2> (4.340)
Q1 Q2 Qi \Q1 Q2
Taking into account that ¢; », = (); and using Eq. (4.323), we get
3 8aV'ng ( p B )—1
9 kT \DiQ1 D2Q

(4.341)
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022 (1— Koo ) Vg / p2 2\~ 1
= ( ) <P1 +P2) ) (4.342)

2. If the initial concentrations of the components correspond to the stoichiometric compo-
sition (Q1/P; = Q2/P5), then solving Egs. (4.338) and (4.339), we have

—2 —1 P
—3 8aV ng P} Pf)} <P2) —
R =° P2 +22 2} Ktz 4343
9 kpT [ ? <Q1 Q2 P ( )
0.22Vno [ Q2 1 <P2>P1 .
nt) = — 0|22 _ — [2) RKYtr)| 4.344
( ) RS PQ P2 Pl > ( )

3. If the initial concentration of one component by far exceeds that of the other component,
e.g.,

Q2 Py

p< 2200 4345
Q1 P2 ( )
then
. 1/P ) !
=3 §0V2n0 P? 1 (1 B Q1P )Pz 1 . P} (1 _ Q1P2> 1

9 kT Di1Q1 | Ko, Q2P D2Qo Q2P '

(4.346)
0.22V°
n(t) = 222V0 Q1 (4.347)
rR® B

If the mass-transfer coefficient of one component is much larger than that of the other
component, then we can easily obtain the results [153] by passing to the limit (D; — 00)
in Eqgs. (4.342)—(4.347). Thus, the diffusive decomposition of multicomponent solid solu-
tions differs from the decomposition of single-component solutions, in that the decomposition
depends on the initial concentrations of the dissolved components and the constants of the
chemical reactions at the precipitate boundaries through Eq. (4.342). Physically, it is clear
that the concentrations of the components at the precipitate surfaces are tightly bound by the
law of mass action. In the multicomponent case, the additional parameters, ()1, determined
by the previous history of the sample, appear. They make it possible to manipulate the growth
rate by optimizing the relative amounts of the dissolved materials.

The results obtained for diffusive decomposition under the condition of simultaneous op-
eration of several mass-transfer mechanisms have been extended to the case of two-component
precipitates of stoichiometric composition [285]. The expressions obtained are formally sim-
ilar to those derived for the growth of single-component precipitates. The difference resides
in that the effective coefficients, D.g and K.g, in the resulting equations, involve the con-
centrations, ¢; o, Which are not specified in this case but are defined self-consistently by the
asymptotic equations for the laws of conservation of matter and the law of mass action. It
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should be stressed that these coefficients depend on the external parameters (); and K3_. It is
this dependence that enables us, by changing the external parameters, to manipulate the dif-
fusive decomposition, in the intermediate asymptotic region, with the goal of improving the
thermal and phase stability of the newly created materials.

It should be emphasized that the theory solves the inverse problem of determining the
characteristics of multicomponent systems in experiments on diffusive decomposition. It al-
lows us to formulate an innovative approach to the experimental measurement of important
and yet not easily measurable characteristics of multicomponent systems such as the constants
of chemical reactions in the solids, K3, the specific surface energy of the phases, o°, and the
partial diffusion coefficients of the precipitate components, D;. They can be evaluated by
comparing the time variation of the experimental size distribution functions for the phases
(the histograms) with the predicted distribution function which depends on these parameters.
The constant parameters in the theoretical size distribution function for the precipitates can be
chosen to fit the experimental data to any desired accuracy, with the help of a computer.

The parameters K3, o°, and D; can also be evaluated by measuring the decomposition
rate constants. In the single-component case, the values D, o, and c, enter into the expres-
sion for the rate constant in a linear combination, so the measurements of the rate constants
should be supplemented by independent experimental measurements of the supersaturation,
as was done in [8]. For decomposition of multicomponent solutions, the rate constant, even
in the simplest cases, is a nonlinear function of these values and of the relative amounts of the
materials, ();, thus enabling us to determine D;, 0°, and K3 by measuring the decomposi-
tion rate constant for different (); and solving Eq. (4.337). Assuming a weakly supersaturated
solution with the decomposition specified by A(yll)A(fQ) (Eq. (4.342)), D1, D4, 0, and K, are
the unknown parameters. Accordingly, the knowledge of four values of the decomposition
rate constants, with different (), and ()2 (satisfying, of course, the condition of weak super-
saturation), would generally suffice to obtain from Eq. (4.342) a set of equations which, being
solved numerically, yield the required parameters.

4.3.3 Regions of Phase Coexistence in Composition Space

In order to determine the regions of coexistence of the different phases, it is necessary to
determine the boundaries of all & phases in the space {Q;} of relative contents @); of the
N-component supersaturated solid solution. These boundaries are (N — 1)-dimensional hy-
persurfaces. In the general case, the equations for these hypersurfaces can be obtained by
determining J°® from Eq. (4.337) and setting them equal to zero:

J*(Q1,Q2,...,Qn) =0. (4.348)

This hypersurface divides the N-dimensional space {Q;} into two regions. In the region
where J° < 0 (under the surface) the solid solution for the sth phase is unsaturated and there-
fore this phase does not exist. In the region where J* > 0 (above the surface) the solid solution
for the sth phase is supersaturated and the phase consists of precipitates. The subspace, defined
by @; > 0 and ZZV=1 Q; < 1, is divided into regions in the space {Q;} by the hypersurfaces
of all the phases. Apparently only the phases for which J*(Q1, Q2, ..., Qx) > 0 can coexist
for the (Q;’s situated in any one of these sections. Since the algebraic equations for determin-
ing J*° are not linear, and only the solutions at each point in the space {Q;} that satisfy the
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physical conditions indicated above should be selected, in the general case the hypersurface
J? = 0 is piecewise continuous. If it is necessary to determine the hypersurface which sepa-
rates the regions in which the phases containing the ¢th component are present from those in
which they are missing, we must determine x; = x;(Q1,Q2, ..., Qx) from Eq. (4.337) and
set it equal to zero, which corresponds to a saturated solution for the ith component.

To illustrate the above-made statements, we solve Eq. (4.337) for a two-phase (s = 1,2),
three-component (: = 1,2,3) system in which the component ¢ = 2 is contained in both
phases. Following the above procedure, we obtain an equation for the surface in a three-
dimensional space {Q1Q2Q3} which separates the region where phase I exists (we say above
the surface) and the region (below the surface) where phase I is absent (J! = 0):

Kl/yz n ﬂ _ 1/4 Kl/yz QV1V4/ 1/21/3)
T1/'/2 V3 3 V3 KV4/(V2V3)

Q=

(4.349)

and an equation for the surface which has phase IT above it and no phase IT (J'' = 0) below it:

1/v 1/vs
;I _ K2 ' & 1= 2 Kl § V2V5/(V1V4) (4 350)
T Avs/v va/(vive) 3 :
33 4 141 141 K22 1Va
These surfaces intersect at Q5 = QX!, which, as can easily be seen, coincides with the line for

which the solution containing all the components is saturated, i.e., K 1= K s =1or

Kl/l/z Kl/ul
L2 (4.351)

Qllfl /v2 Q;B/V4

The intersection of the surfaces of Egs. (4.349) and (4.350) forms four regions (see Fig-
ure 4.6). Phases I and II occur above these surfaces but not below them, where the solution
is unsaturated. Only phase I exists in the region situated between the surfaces determined by
Egs. (4.349) and (4.350), when the surface equation (4.349) is below Eq. (4.350). However, if
the surface (Eq. (4.350)) is below Eq. (4.349), then the region between the surfaces has only
phase II.

As an example, we consider the phase diagram of decomposition, shown in Figure 4.6(b),
as projected onto the plane Q1 Q2 (3 = const). Here lines 1 and 2 correspond to Egs. (4.349)
and (4.350), while point A corresponds to Eq. (4.351). The state of the system under given
external conditions is determined by point B with the initial concentrations Q) and Q9.

A change of phase relations or a transition from one phase region to another, in the sys-
tem under consideration, may be due to either a change of the systems initial state related to
the change of the initial concentrations (Figure 4.7(a)) or a change of the boundaries of the
region of coexistence of phases (Figure 4.7(b)). As shown in Figure 4.7(a), the system can be
transferred from state B (phase I) to state B’ (phase II) by changing the initial concentrations
@Q%,Q9 — @}, Q). Changing the external conditions, such as temperature, pressure, etc.,
or in other words changing only K2 and leaving the position of point B unchanged (Fig-
ure 4.7(b)), we can change the boundaries of the region of coexistence of phases in such a
way that the system transfers to another region.
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Figure 4.6: Phase diagram for an illustration of the decomposition process (K1 = 2 x 107°, K> =
0 == =1uv3 = 2) (a) in three-dimensional space {Q1Q2Q3} and (b) as projected onto
the plane Q1 Q2, Q3 = 0.005.

Let us now consider a solution which is weakly supersaturated in all of the components
(Q;1 ZS i viJ® < 1and K3 ~ 1). The system of equations (4.337) can be linearized and
solved for this specific case. In other words, it determines the hypersurfaces in the region
near their common line of intersection K1, = K2 = ... = K3 = 1. For example, setting
first J' and then J'! equal to zero, exactly as before, we obtain equations for the boundary
surfaces of the phases for a two-phase, three-component system. Note that at J' = 0 the

solution is sought near K5, = 1, i.e., where Q} = K%/VQQIVI/”Q(I +¢), and at J = 0,

www.iran—m L\V‘dLLC(l m

Age Crwdivs 9 Olgils @ yo



4.3 Theory of Diffusive Decomposition of Multicomponent Solutions 155
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Figure 4.7: Scheme of phase change due to (a) change of initial conditions and (b) change of interphase
position (K] = 107%, K4 = 5 x 10™8); the other parameters are the same as in Figure 4.6.

QY = K)"Q3"/"*(1 + n), where ¢ < 1 and n < 1. Thus we obtain equations for the
surfaces near the line K L= K 2 =1, which correspond to Egs. (4.349) and (4.350) in the
region ;. If the kinetic hindrance for phase formation is large enough, then the phase may fail
to be formed in real time, though it is asymptotically stable. The transformation of the phase
diagram with time should be taken into account. Solving the system of equations (4.337), we
obtain the kinetic phase diagrams of the decomposition, enabling us to determine the stability
of phases based on their kinetic characteristics.
For a solution weakly supersaturated in all the components, we have

s s SAS (Pis)Q (Pis)2
JS=|1—K5 — DSA%(t 4.352
5 ( )ij 5.0, Z 5| (4352)
Cioo = Q'L - P,LS]-;I(;; - PlsAs(t) 1 5 + 1 5 (4.353)
Z (P?) Z (P?) D Z (P’)
Qi Q; D;Q;

(] K3 K3

Here ¢; can be determined from Eq. (4.319) and A®(t) = const-t~'/3. Equation (4.353)
defines the dynamics of the relative quantities of matter in the precipitates, i.e., J*, and the
equilibrium concentrations ¢;  in the asymptotic region. Itis seen from Eq. (4.353) that these
values vary with time as ¢~/ and approach certain constant values at sufficiently long times.

The phases have diffuse boundaries because of the nonuniform distribution of the mate-
rial and fluctuations of temperature and concentration of the components. As can be seen
from Eqgs. (4.349) and (4.350), the regions of coexistence of the phases depend on the rel-
ative amounts of the dissolved materials (); and on the constants of the chemical reactions
K3 . Thus, the surface tension during the diffusive decomposition process in a multicompo-
nent solid solution gives rise to a universal size distribution of the precipitates of the phases,
and the quasithermodynamic equilibrium conditions determine the phases produced in the
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N-component solution. The phases can be changed by either varying the (); ratio or the
temperature, since K3 vary differently with temperature.

The law of mass action in Eq. (4.306) can be easily replaced by a general equation for the
phase equilibrium at the boundaries of the precipitates. We get

11 % =1-F({cig}) =1 (4.354)
; R
Theoretically, this does not affect the conclusions concerning the separation of the system
of equations (4.303)—(4.306) into s independent subsystems, as well as the formation of a
universal distribution function, and the law of evolution of the critical size. It affects only
the phase diagrams of the decomposition, i.e., the regions of coexistence of phases and the
quantities of the material in the phases, which are determined by the system of algebraic
equations (4.337) and depend on the specific equation for the phase balance F ({cf R}) =1
Note that all the above conclusions hold true if £ < N, i.e., the number of the coexisting
phases is not larger than the number of the components. If we take into account the external
parameters p and 7', then the number of the coexisting phases is specified by the Gibbs phase
rule k < N + 2.

To determine all the coexisting phases for £ > N, it is necessary to separate the system
of equations (4.337) into groups containing [N phases. The overall number of such groups
is CY. Then each of the C}¥ groups of equations should be solved and only one group will
have the roots (for given p and T") meeting the physical requirements of the coexistence of the
phases that were discussed above (J° > 0; 0 < x; < 1). It is the solution of this system of
equations that selects those /N phases that survive in the process of diffusive decomposition.

4.3.4 Competition of Different Phases in Coarsening

In the course of diffusive decomposition the amount of material available to generate particles
becomes small, and competition arises between different phases. As a result, only some of
those phases that precipitate at early stages of the decomposition can survive [305].

4.3.4.1 Phases with Simple Stoichiometry

Consider a three-component solid solution of atomic impurities A, B, and C' in a chemically
inert matrix, which can precipitate into two stoichiometric two-component phases containing
a common component: A,,C,, and B,C¢. To start with, let us consider the simplest stoichio-
metric phases, where p = v = 1 = £ = 1. The state of the system is determined by the law
of mass action (see Eq. (4.306)),

cqce = K, cpee = Ko, (4.355)
and by the equation of stoichiometry (Eq. (4.305))
Ga + 9p = 4o, (4.356)

where ¢; (¢ = a, b, ¢) is the concentration of component 7 averaged over the volume, K » are
chemical reaction constants for the first and second phases, respectively, and g; is the relative
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number of impurities of type ¢ in particles per unit volume. Moreover, the first phase will
precipitate out when the following inequality is satisfied:

da > 0, (4.357)
and the second when the condition
g >0 (4.358)

is satisfied. Taking Eq. (4.356) into account, we see that the condition g. > 0 is also necessary
for the first and second phases to precipitate, whereas this takes place automatically when
Eq. (4.357) or (4.358) are satisfied.

The equation of balance for component type ¢ takes the form

Qi =q +c, (4.359)

where @); is the total number of impurities in solution and in particles. Taking this relation
into account, it is convenient to write Eq. (4.356) in the form

Cqatep—ce+6Q =0, (4.360)
where

0Q = Qo+ Qp — Q. (4.361)

The solution the system of Eqs. (4.355) and (4.360) gives the values of the component
concentration at the late stage of the decomposition:

Ko
2 (K + K>)

[0Q2 + 4 (K, + K») +0Q] "%, (4.362)

Ca,b =

ce =2 (K1 + Ky) [6Q? + 4 (K, + Ko) +6Q]*. (4.363)

These expressions combined with Egs. (4.357) and (4.358) determine the conditions for exis-
tence of the phases. Thus, the first phase (AC) exists when

1 (K
1 L A2
c = —— | —=Q: - K , 4.364
Q> QL= QG(KEQG Q (4.364)
while the second (BC') exists when

1
I _ _
Q>Qi=Qu- 5

A situation of interest in applications is the one where the component precipitates strongly
into particles, i.e., when 6¢) > K 5. Therefore, we will analyze the results for this case in
particular. From Egs. (4.362) and (4.363), we obtain for 6¢) > 0

K
(Fng _ K1> , (4.365)

Ky K1+ K

ab 2 0Q—"—, c ;
Cat QK1+K2 ¢ 0Q

(4.366)
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while for 6Q) < 0
K2
Cab™or N 0Q]. (4.367)

The conditions for existence of phases (4.364) and (4.365) take the form

K

Qe > Qe =Qb— 72 Qu: (4.368)
1

Qe > Q' =Qa — %er (4.369)
2

It is easy to see that when 6@ > 0 (i.e., the number of components of type C' is less than
the numbers of types A and B taken together) the conditions given by Eqs. (4.368) and (4.369)
cannot be satisfied at the same time, i.e., the phases cannot coexist. In fact, from Eq. (4.366)
it follows that in the final state ¢, < ¢, ¢p, i.€., component C' is almost completely absorbed,
while impurities A and B remain in the solution. A competition then begins between particles
of the first (AC') and second (BC') phases for the insufficient component C', as a result of
which only one of the phases survives. For 6¢) < 0 there is enough of component type C'
to prevent competition between the phases, and they exist independently of each other. All
excess impurities A and B precipitate into particles, while the type C' component remains
partially in solution.

4.3.4.2 Separation of Three Phases

Consider the case where, in addition to the two binary compounds, it is possible for a third
phase to precipitate consisting of the pure components C, A, or B. As was shown above,
when 6@Q) < 0 the type C component partially remains in solution, and consequently it can
precipitate in the form of a pure phase. In this case, system (1) must satisfy the equation

Ce = Coo,c- (4.370)

From this we find

K
Cap = —22. (4.371)

Coo,c

Here c . is the equilibrium concentration at the planar boundary.
Stoichiometry (Eq. (4.356)) in this case determines the amount of precipitate of the third
phase C:

ge = (Qc — cc) = (Qu — ca) — (Qp — cb). (4.372)

Taking into account that three phases precipitate for g. > 0, it is easy to obtain the conditions
for coexistence of all three phases:

K
Q> Qo+ Qp+ oo — 2, (4.373)

00,C
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Qap > Ki2/Cooc- (4.374)

When 6@ > 0, the excess of type C' component is completely absorbed by particles of the
new phases, and as we noted above, competition will allow only one of them to survive. The
competition disappears if it is possible to precipitate a pure phase A (the case where phase B
precipitates is entirely analogous). Adding the equation ¢, = ¢, to Eq. (4.355), we obtain,
as before, the condition for coexistence of all three phases:

K K
Qo> Qe — Qp+ Coore (1 + —2> L (4.375)
Kl Coo,a
K K
Qb > - Coay Qo> — . (4.376)
KQ Co,a

4.3.4.3 Phases with Arbitrary Stoichiometry

Let us consider precipitation of two phases with arbitrary stoichiometries: 4,C, and B,,Ck.
Equations (4.355) and (4.356) in this case can be written in the form

chel = Ky, 4.377)
)t = Ko, (4.378)
o | B _ fe (4.379)

B v+E
Let us introduce

5Q:%+Qb Qc
I

n  v+é

and, as before, consider the case where the chemical reaction constant is small compared with
0Q. Taking Egs. (4.378) and (4.379) into account, let us rewrite Eq. (4.380) in the form

_1

c 1 b KY n+&

0Q = 2 + = (cq) "¢ <_2> . (4.381)
poom K¢

(4.380)

This equation can be solved rather simply in two cases: when y +v =n+ € and u+v =
2(n+¢&) (the case where p+v = (n+&)/2 obviously reduces to the previous cases by making
the substitution A < B).

Note that this case, although restrictive, still includes a rather wide class of compounds: in
the first case, ACy and BC5, ACy and ByC, A3C3 and B>C3, A3C3 and B3C5, etc., while
in the second case, A2C5 and BC, A3C and BC, etc. In the first case

11 K\
5Q = cq ﬁ+5 (é) . (4.382)
1
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From this we obtain the condition for existence of the phase A,C,:

a > 4.383
KQa > Qv — + 3 ——CQc; (4.383)
and of the phase B,,C¢:

~Wh > Wa — 4.384

Qb Q Jr ¢ —CQc; (4.384)
where
K3
k= (Kf ) ) (4.385)

Analogously, in the second case where ;1 + v = 2(n + &), we find that phase A,,C,, exists
when the condition

KQZ > Qp — T&QC (4.386)

is satisfied, and phase 53,,C; when the condition

—Q; > Qo — ——Q. (4.387)

f +£

holds.

So, at the initial stage of the decay all phases whose supersaturation is positive and suffi-
ciently large precipitate. As the supersaturations decrease, competition begins both between
particles of the same phase but different sizes and between different phases, as a result of
which one or several phases survive, depending on the conditions of survival or extinction
given by the inequalities (4.364), (4.365), (4.383)—(4.387), and a universal size distribution of
particles is generated.

We note the following interesting feature of the behavior of this system with time. The rate
of precipitation of a phase depends not only on its supersaturation but also on the conditions for
its nucleation, and the diffusion coefficients of the reagents. Therefore, a situation is possible
where, at the initial stage of the decomposition, the phase that precipitates most strongly
is one that does not satisfy inequalities (4.364), (4.365), (4.383)—(4.387), while the phase
that satisfies these inequalities precipitates more slowly. Then (at the late stages), the first
phase dissolves due to the competition, while the second phase survives. Thus, in this case, a
replacement of precipitating phases takes place in the course of diffusive decomposition of a
supersaturated solution.

Note as well that a competition is possible, not only between different phases but also
between particles of the same phase under different conditions (for example, at a boundary
and within the body of a grain). Although the location where the phase precipitates (in the
body of a grain, at its boundaries, or at some nucleation centers) can affect the kinetics of
the initial stage of the decay and the expression for the chemical reaction constant K », it
does not alter the analysis given above qualitatively, nor the results obtained, since the only
important factor is the diffusive exchange of material between the phases.
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4.3.5 Formation of Precipitates of Nonstoichiometric Composition

It is well established [68] that many compounds used as strengthening agents constitute in fact
phases of variable composition, and deviations from stoichiometry greatly affect the proper-
ties of existing materials. In examining diffusive decomposition (coarsening), which produces
precipitates of nonstoichiometric composition, we should first note that, physically, nonstoi-
chiometricity of the compound (phase) is determined by the components that can change their
presence in the compound to some extent. In stoichiometric compounds components do not
change their stoichiometric coefficients v;. Although the v; can change in the homogeneous
regions, it is physically clear that under equilibrium conditions, when the thermodynamic
potential of the system is at minimum, they asymptotically approach certain constant values
determined by the initial conditions, i.e., by the relative initial quantities of the components
and by the chemical reaction constants. These considerations suggest that the precipitates of
stoichiometric composition grow in this case, but the corresponding coefficients v; are addi-
tional internal parameters (for stoichiometric compounds) that must be determined. In one
sense, nonstoichiometric compounds can be considered as a solid solution of limited solu-
bility. Thus, all the equations and their solutions, which determine the above precipitate size
distribution functions, can be used in this case. The important difference is the existence of ad-
ditional equations for determining v; in the set of algebraic equations, which relate the internal
parameters governing the distribution functions ¢; ., P, and J*° to the external parameters
K3 ,and Q).

Let us introduce the parameters Avj- = z; , which characterize the variation of the
stoichiometric coefficients in the homogeneous region of the components of the sth phase
v; = v;(z]). If the sth phase has components with finite homogeneous regions, this generally
means that various equilibrium chemical reactions can occur at the interphase boundaries in
these regions. Under equilibrium conditions, the minimum of the thermodynamic potential is
realized,

§0%(27) = 0®°(25) = -+ - = 9°(2)) = 0. (4.388)
Hence, for infinitesimally close values we can write

900t _ . (4.389)

5D°(25 + A) — 60°(23) = A =

Thus, under quasiequilibrium conditions at the phase boundaries we have
5P =0, (4.390)

06%°  95®° Ov;

s s s
8zj (“)l/j 8zj

The chemical potential per molecule of the sth phase is ;® — ° N®. The average chemical
potential 1z (per atom of the compound) generally depends on the normalized nonstoichio-
metric coefficients. However, because of the presence of a nonstoichiometric compound this
dependence is weak in the homogeneous region. Therefore, the chemical potential per atom
is assumed to be constant in the homogeneous region, and it sharply increases outside this
region to a good approximation.

—0. (4.391)
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162 4 Theory of the Late Stages of Nucleation—-Growth Processes: Ostwald Ripening

Let us write down the complete set of equations for the internal parameters of the system
(cioo, I/j, J?). This set consists of the equations, being consequences of the conservation laws,
and of Eqs. (4.390) and (4.391). It is convenient to write it separately for the stoichiometric
and nonstoichiometric components, after eliminating, using Eq. (4.391) for a dilute solution,
the jth components in Eq. (4.390), and taking into account that 81/S / 0z; = 1 for nonstoichio-
metric components with subscript j and 0vf/0zf = 0 for st01ch10metr1c components with
subscript ¢. Equation (4.391) holds identically for these components:

Y P =Qi— ¢, (4.392)
_ \P? 1 S [(—S S

[[@)" =exp ,CB—TZPj (B° =) p = A%, (4.393)
J J

OOH o) = (K2 )N (4.394)
— s —s ﬁs - /¢j

T YL 4.395
Cj c],oo c],oo exp{ kBT } ( )

The physically meaningful roots of these equations must satisfy the requirement J° > 0,
Q1 > ©;  and, in addition, the roots P’ must be located in the homogeneous region.

If, under the given conditions, several phases can achieve the concentration ¢; = ¢ .,
then c = ¢; will have the lowest value. It must be assumed for the remalnlng coexistent
phases that P} =P}, or P} = P7 . depending on whether ¢}, < ¢}% or¢c; o > ¢}

Consequently, Egs. (4. 392)—(4 395) should also be rewritten. The PS ratios should also be
taken into account,

P? v
ZPJ‘.S — ]_’ J - J COHSt, (4396)
i Pf/ VJS”

in all the phases and for all the components, except Pjso for which there exists one equation in
Eq. (4.395),
Cj = C5 oo = Cj oo (4.397)

§,00 4,00
If the conditions are such that

<Ent<ent < <gn <Entt <. (4.398)
is valid for all possible changes in the homogeneous region, then P; for all the coexistent
phases will have the value P} ;. on the left-hand side of ¢ G and mem on the right-hand side
of it. If there are overlapping homogeneous regions, when ¢:* oo =c3? o = -+, and the lowest
value of ¢; is located inside this region, then the P}’ values for the overlapplng phases will lie
inside the homogeneous region and will be related as

PJv_Sl _psi. _ps2_ps: . _ ... (4.399)

J,min J J,min
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4.3 Theory of Diffusive Decomposition of Multicomponent Solutions 163

Accordingly, in all the remaining coexistent phases P; = P} ; or P; = P} ... The
situation discussed above can be generalized to include several components with a finite ho-
mogeneous region.

If the concentration ¢; for the nonstoichiometric component is an external parameter and
coincides with one of the parameters ¢;, o, we must assume that P; = P7, ;, or PP = P ..
depending on whether ¢; approaches ¢; o, from below or from above. The same procedure is
used to prove the unique physical solution for the given conditions and to determine the region
of coexistence of the phases.

In the above analysis, we have assumed that precipitates of homogeneous composition
are produced. This is correct if the diffusion processes occurring inside the precipitate are
not slower by many orders of magnitude than those in the matrix. If, however, the diffusion
processes inside the precipitate are slowed down for some reason compared with those in the
matrix (e.g., a liquid or gaseous matrix), then precipitates of nonhomogeneous stoichiometric
composition are produced inside the homogeneous region. The stoichiometric coefficients are
then no longer physically meaningful though the above equations remain valid. This problem
is, of course, more complicated and cannot be solved by simply integrating Eq. (4.304) but
should incorporate the initial conditions. The quasiequilibrium condition is fulfilled in this
case too, thus allowing us to use the laws of mass action at the phase boundaries and the
additional conditions of Egs. (4.390) and (4.391).

4.3.6 Comparison with Experimental Data

An experimental verification of different aspects of the theory outlined has been carried out on
different materials of practical importance, such as steels and iron alloys containing carbide,
nitride, and other precipitates [10, 37, 52, 68, 87, 101, 172]; ageing alloys containing nickel,
aluminium, etc. [10,37,52,87,101]; precipitation-strengthened composite materials [42,204];
internally oxidated alloys [58], and glasses and ionic crystals [105, 288], etc. We shall not
attempt now to make a comprehensive survey of the wealth of experimental studies of diffusive
decomposition, but will discuss only those studies which are of most interest for comparing
theory with experimental data.

In a series of studies [6, 11] Ardell performed careful investigations to obtain statistically
representative data on the growth of ~/-precipitates (Ni3;X, where X is Al, Ti, or Si) in nickel
alloys which are the basis of various heat-resistant materials for high-temperature applications.
Figure 4.8 shows the histograms for v/-precipitations in the Ni—Al system. The theoretical uni-
versal distribution function corresponding to mass transfer through volume diffusion is shown
for comparison. It can be seen that the theory fits the experimental data closely. The shape
of the histograms resembles the predicted curves: a rather slow growth in the region where
the sizes are small, a blocking point uy = 3/2, and a rapid decline in the region beyond it.
The data on the growth kinetics for «’-precipitates [9] strongly suggest the applicability of the
“t1/3_law” for the mass transfer attributable to volume diffusion (Figure 4.9). The significance
of the experiments in [9, 11] is further increased by the fact that the equilibrium concentration
of the dissolved material in the solid solution in nickel was independently assessed by means
of magnetic measurements. This made it possible to explore the kinetics of change of the
supersaturation in the systems under examination. The supersaturation decreased with time as
t=1/3,i.e., by the same law as predicted by the theory.
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Figure 4.8: Histograms for v'-precipitations in a Ni—Al system [6] compared with the distribution
function P(u).

Figure 4.10 shows the histogram for Ni3Al precipitates in Ni-22at%Co-13at%Al alloy.
The theoretical distribution function computed by the authors [11], using an iterative algorithm
to fit the experimental histogram, is also shown in Figure 4.10. The theory and the experiment
apparently agree closely with each other.

The evolution of the universal distribution function from an arbitrary initial distribution
is clearly illustrated in [335] by the growth of cementite (FesC) particles in Fe-0.79at%C,
alloy spheroidized at 704 °C (Figure 4.11). The histograms, which are diffuse at early time
of annealing, progressively approach the theoretical distribution while the blocking points
approach ug = 3/2.

A detailed analysis of the precipitate growth in steels containing 0.25% of vanadium was
carried out in [18], where the kinetics of precipitation of vanadium carbide, nitride, and car-
bonitride were studied in the course of steel annealing at a temperature of 790 °C. Early in

the annealing process the growth kinetics obeyed the equation F2 ~ t which corresponds, in
accordance with the theory, to a decomposition governed by chemical reactions at the inter-
face. A study [70] of the kinetics of ThO, particle growth in TD-nickel, carried out by using a
correlation analysis of data, showed that a cubic growth law (the “t1/3_law”) was fulfilled to a
very high confidence probability level (p = 0.995). A study [188] performed using statistical
methods of testing hypotheses (Pearson’s y2-test, the Kolmogorov test) showed that the time-
asymptotic behavior of the size distribution function for ZrO, particles in a dispersed system,
Mo-ZrOs, could be described by the universal function to a confidence level of p = 0.95.
The least-squares method, applied to the points belonging to a specific mass-transfer mecha-
nism, showed that the growth kinetics obeyed the “t'/3-law” with a good accuracy. Diffusive
decomposition in nonmetallic systems is illustrated by the histograms (Figure 4.12) for silver

www.iran—m i\\'ild .com

Age Crwdivs 9 Olgils @ yo



4.3 Theory of Diffusive Decomposition of Multicomponent Solutions 165

41078
A 6.35%Al
L e 6.71%Al
775°C
- 310°F 750°C
o
S 715°C
4 _
= 2107
s
g
S 625°C
1078 A
0 | | | | | | | | |
0 20 40 60 80
t1/3, S1/3

Figure 4.9: Growth kinetics for /-precipitations in a Ni—Al system [9].

particles growing in KClI crystals at 700 °C. Comparison of the histograms with the theoretical
function for mass transfer by diffusion along the dislocation lines showed good agreement be-
tween theory and experiment. The growth of metal precipitates in ionic crystals via migration
of the F-centers along the dislocation lines was confirmed by direct observation [48].

Finally, we discuss the results of a numerical computer simulation of the kinetics of the
phase segregation in two-component high-temperature heat-hardened alloys. The analysis
of these results [201] based on the above concepts of coarsening [153, 155] showed that the
diffusive interaction of large and small clusters (larger particles devoring the smaller ones)
attributable to the different solubility of differently sized particles was the primary growth
mechanism at the later stage of the decomposition, when the overall number of particles tended
to decrease. The distribution of large clusters at the later stage was in good agreement with
the predicted universal function and the kinetics was in good agreement with the “¢'/3-law.”
The experimental data fitted the theory very well both qualitatively and quantitatively.

4.3.7 Conclusions

The above analysis shows that a consistent, comprehensive theory describing coarsening at
the later stage of diffusional decomposition has been developed. Diffusive decomposition
is of primary importance in creating new materials with specified properties. The problem
of the diffusive decomposition of supersaturated multicomponent solid solutions has been
formulated rigorously. A method for solving the basic equations defining the decomposition
process has been developed. The resulting equations and the method of their solution enable us
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Q=0.32 y

P(u)

1.5 2.0

Figure 4.10: Distribution functions, calculated (i) according to Eq. (4.50) and (ii) taking into account the
collision integral, in comparison with the histogram for NizAl-precipitations in Ni-22at%Co—13at%Al-
alloy [59] (precipitation volume fraction Q = 0.32).

to formulate and solve various problems concerning diffusion kinetics in solids. This method
is general enough to provide a mathematical description of a variety of physical phenomena
such as sintering, swelling, degradation of semiconductors, etc.

The nonlinear kinetics have been shown to determine the peculiar behavior of dispersed
systems at a later stage of decomposition, when the system forgets its initial state and enters
an asymptotic state, which is stable in the appropriate variables and depends only on the mass-
transfer mechanism operating in the system. Physically, the interfacial tension gives rise to a
universal (in the appropriate variables) size distribution function, which is independent of the
initial distribution, and which is the same for the precipitates of all the existing phases. The
phases which asymptotically survive in the process of competitive growth are defined by the
laws of mass action and the conservation laws. The boundaries of the coexistence regions of
the precipitates of both stoichiometric and nonstoichiometric phases have been determined,
thus enabling us to construct phase diagrams of decomposition. The evolution of the mean
size of the macrodefects in a dispersed system, at a later stage of the decomposition, obeys
the R ~ t/3 law for diffusion-limited growth. In general, it depends on the specific mass-
transfer mechanism. The kinetics governed by the mass transfer through volume diffusion,
which obeys the “t'/3-law,” is asymptotically stable at the latest stage of decomposition.
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0.5

P(u)

Figure 4.11: Histograms for cementite particles in Fe-0.79at%C steel, spheroidized at 704 °C. The
solid curve numbers correspond to different annealing times ¢1 > t2 > t3 > t4. The dashed curve
corresponds to the universal function (Eq. (4.50)).

Numerous experimental studies, on various materials, strongly suggest that the theory de-
scribing the late stage of diffusive decomposition fits the experimental data both qualitatively
and quantitatively. In the overwhelming majority of cases the growth kinetics follow the theo-
retical t'/3-law, where the growth is governed by volume diffusion, and the distribution func-
tion approaches a universal shape. The experimentally observed histograms are broader than
the theoretical asymptotic distribution function, a phenomenon which is adequately predicted
by the theory when collisions are taken into account and the initial distribution transforms into
the universal distribution function.

Investigations of the decomposition kinetics make it possible to determine experimentally
the characteristics of multicomponent systems which are important but difficult to measure,
such as the partial diffusion coefficients for the components of the precipitates and the coeffi-
cients of specific interface energy. The theory allows one to develop an innovative approach to
the evaluation of the constants of chemical reactions that may take place inside the solids. This
knowledge is of theoretical and practical importance for optimizing the properties of existing
materials.
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Figure 4.12: Histograms for silver particles, growing in KCl crystal [106] for different decomposition
times: (a) for 2R = 330 A, (b) 2R = 460 A. The universal distribution function for mass transfer by
grain boundary diffusion is also shown (see Tables 4.1 and 4.2, n = 4).

The theory developed above forms the basis for a quantitative prediction of the evolution
of complex multicomponent systems, and hence of their structure-dependent properties asso-
ciated with the size distribution of macrodefects in the process of diffusive decomposition.
The criteria for the stability of dispersed systems, based on this theory, allow us to make prac-
tical recommendations concerning the development of advanced multicomponent materials,
with improved properties and enhanced size and phase thermal stability. According to the
theory, the precipitates grow slowly when the values of specific interface energy o, solubility
Coo» and the diffusion coefficients D;, etc., are small. These criteria apply in fact to various
heat-resistant materials. Extremely small values of 0 ~ 0.2 J/ m? in nimonic-like alloys,
i.e., alloys strengthened by precipitations from the ~’-phase, suggest high stability of these
materials at high temperatures.

The principle of low solubility of the dispersed phase was first implemented in the pro-
duction of tungsten (used in incandescent filaments) and TD—nickel strengthened with thorium
oxide [102]. A similar principle was used to create a heat-resistant alloy based on the Fe—Al
system, as well as other heat-resistant materials [111] with extremely low solubility of the dis-
persed phase. The addition of active carbide-producing elements, resulting in the formation of
carbide precipitates with low solubility and small diffusive mobility, is a prerequisite for the
production of high-quality steels [37, 172]. The same principles have successfully been em-
ployed for developing advanced lightweight alloys with enhanced mechanical properties [52].
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4.3 Theory of Diffusive Decomposition of Multicomponent Solutions 169

The problem of diffusive decomposition involves a number of problems that have yet to be
resolved. The issues associated with interaction between neighboring macrodefects during de-
composition have not been extensively worked out. Recent experimental studies [157] showed
that some macrodefects can initiate the growth of others, e.g., in the precipitate—pore systems.
Computer simulations of various aspects of decomposition are promising. These activities
include the formulation of a model; the construction of phase diagrams of the decomposition
of multicomponent systems; the evaluation of the parameters of dispersed systems (D;, K5,
%), and end with accurate processing of experimental data using statistical methods. The
modeling of the stepwise heat treatment techniques, which underly the production technology
of numerous modern materials, is a challenging theoretical problem. Some of the advantages
of numerical modeling are illustrated in the subsequent chapter (Chapter 5).

The role played by the elastic stresses in the diffusive decomposition process is generally
more complicated. The effect of these stresses on the equilibrium geometry of the precipitates
may prove important, especially in the presence of anisotropy. For example, cubic-shaped,
platelike and acicular precipitates may transform into differently oriented spheroidal or disk-
shaped precipitates, as a result of structural transformations during the decomposition. This
effect should lead to a considerable modification of the diffusion fields which can affect the
characteristics of the decomposition. Two studies, [76, 349], revealed an extremely stable
microscopic structure in the Fe—Al alloys which contain fine-grained, coherent, Fe;Al pre-
cipitates with position ordering. These are found even after a long-lasting annealing, such
as in the Fe-15at%Al alloy, where the size of the precipitates is smaller than 100 A while
their density is of the order of 10%> m~3. Several models based on stress analysis have been
proposed to account for such a high stability. This interesting phenomenon will be studied in
more detail in Chapter 6.

The morphology, mechanisms, and kinetics of precipitate growth, especially at a later,
slower stage [38], require further theoretical and experimental investigation. This is of partic-
ular importance because this phenomenon, which is common to many other systems [38], can
be useful in enhancing the thermal stability of precipitation-strengthened alloys operating at
high temperatures. The effects of exposure to various external factors (hardening, prestraining,
high pressures, ultrasound, stepwise heat treatment), which can largely affect the kinetics of
the precipitate growth, have not been analyzed thoroughly. A detailed analysis of diffusive de-
composition in ionic crystals and heavily disordered materials is another challenge facing the
theory. Most of these problems can be attacked within the framework of the above-developed
theory.
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5 Shapes of Cluster-Size Distributions Evolving in
Nucleation and Growth Processes

5.1 Introduction

In the preceding chapters (see also [298,300,302,307]), the basic characteristics of first-order
phase transitions, proceeding via the mechanism of nucleation and growth, were established
by analytic methods. They include, in particular, the time evolution of the flux and the cluster-
size distribution function, characteristic time scales of the different stages of the nucleation—
growth process, and estimates of the number of clusters formed in the initial stages of this
process and their average sizes. One of the aims of the present chapter consists in the illustra-
tion of the analytical results based on the numerical solution of the set of the kinetic equations
describing nucleation—growth processes.

In addition to the mentioned characteristics, which have been determined analytically, for
a number of applications the evolution of the cluster-size distribution function in the whole
course of the nucleation—growth process and its dependence on different constraints has to be
known (cf. [22,114,178,350]). An analysis of the literature shows, however, that with respect
to possible shapes of cluster-size distributions, at part rather arbitrary, at part even wrong
assumptions are made. Some of them will be analyzed in detail in the further discussion.
In particular, the knowledge of possible shapes of cluster or bubble-size distributions should
be helpful in experimental investigations of the kinetics of phase formation processes (cf.,
e.g., [100,343]).

By both mentioned reasons, a detailed analysis of possible shapes of cluster-size distribu-
tion functions is believed to be of considerable interest. In the present chapter we concentrate
hereby the attention on the following topics:

(1) limits of applicability of statistical cluster-size distributions for an interpretation of ex-
perimental results;

(i) comparison of the steady-state distribution of classical nucleation theory with the distri-
butions evolving in nucleation—growth processes if conservation of the total number of
particles is taken into account;

(iii) formulation of conditions for the evolution of monodisperse cluster-size distributions.

Analytical derivations are supplemented and illustrated by the results of numerical calcula-
tions.

In order to proceed, the basic kinetic equations describing nucleation—growth process are
formulated and specified for different growth mechanisms. It is important to note that the
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172 5 Shapes of Cluster-Size Distributions Evolving in Nucleation and Growth Processes

method of determination of the kinetic coefficients employed here does not involve the ap-
plication of the so-called equilibrium distributions of classical nucleation theory, respectively,
their modifications and a reference to the principle of detailed balancing [306].

As a model system, precipitation processes in liquid and solid solutions are considered.
However, the results are widely independent of specific features of the model system used.

5.2 Analysis of Statistical Approaches:
“Equilibrium Distribution” of Classical Nucleation
Theory, Fisher’s Droplet, and Similar Models

In classical nucleation theory and a variety of its modifications and extensions [28, 29, 71,
93,306, 358], it is assumed that the evolution of the newly evolving phase proceeds via the
formation and growth of clusters in the ambient phase. It is supposed in a commonly good
approximation that clusters grow and shrink by aggregation and emission of single particles,
only. In particular, such assumptions hold for precipitation processes in solid solutions, where
the mobility of dimers, trimers, etc., is much lower as compared with single particles. It has
been shown, however, that even for droplet formation in vapor the process is determined in
most cases by the considered type of reactions [196]. The following considerations are limited
therefore to such kind of reactions, coagulation processes [338,339] are excluded thus from
the analysis.

As was already mentioned in Chapter 2, for the determination of the emission rates of
single particles from the clusters and the steady-state nucleation rate, in general, a somewhat
artificial model is used introduced originally by L. Szilard (see Figure 2.2). It is assumed
that, once a cluster reaches an upper limiting size n > g > n,., it is instantaneously removed
from the system. Moreover, according to Szilard’s model, simultaneously to the removal of
a g-sized cluster, g single particles are added to the system. In this way, the total number of
particles is kept constant.

Starting with a state consisting of single particles only, after some time interval (denoted
commonly as time lag in nucleation) a time-independent steady-state cluster-size distribution
is established in the system. Assuming that (i) clusters of different sizes can be considered
as different components in a multicomponent perfect solution (or a mixture of perfect gases
for vapor condensation), (ii) the number of particles aggregated in the clusters is small com-
pared with the total number of solute particles, (iii) conservation of the total number of solute
particles is fulfilled, and (iv) the change of the cluster size is possible by emission or aggre-
gation of monomers, only, Frenkel [71] obtained an expression for the stationary cluster-size
distribution function f(¢)(n) of the form

F(n) = f(l)exp{—Aki(;)}- (5.1)

Here kp is the Boltzmann constant and 7' is the absolute temperature. AG(n) denotes the
so-called work of formation of a cluster consisting of n monomers. It equals the change of
the Gibbs free energy when in a homogeneous initial state at constant values of the external
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pressure p and temperature 7" one cluster of size n is formed. f(n) denotes the number of
clusters per unit volume consisting of n single particles (atoms, molecules). Going over later
on to a continuous description, f(n)dn gives the number of clusters in the range of cluster
sizes n,m + dn. f(1) is the concentration (number per unit volume) of single particles which
will be denoted also as ¢ (cf. also [306]).

Expression (5.1) was obtained by Frenkel by minimizing the Gibbs free energy of the
heterogeneous system consisting of clusters of different sizes in the otherwise homogeneous
ambient phase. Hereby the boundary conditions as formulated above were taken into ac-
count. The distribution (5.1) is denoted commonly as equilibrium or constraint equilibrium
distribution with respect to cluster sizes [135,352,353]. Note, however, that this notation is
misleading. The time-independent state in the model system, it was derived for, is not an equi-
librium but a nonequilibrium steady state. Therefore, the procedure applied in the derivation
of Eq. (5.1) lacks any thermodynamic foundation.

Moreover, one has to take into account that the distribution refers to Szilard’s artificial
model system which is not realized in nature (except for artificial conditions or by assuming
some kind of “Szilard’s demon” in analogy with Maxwell’s demon (cf., e.g., [117-121])).
Therefore, the often found identification of the so-called equilibrium distribution with respect
to cluster sizes with real distributions evolving in nucleation—growth processes in thermody-
namically unstable systems is, in general, incorrect. However, for thermodynamically stable
initial states the distribution can be applied for the description of cluster-size distributions
in real systems. In equilibrium states, for any value of n the inequality AG(n) > 0 holds.
Equation (5.1) represents in such cases Boltzmann-type heterophase fluctuations evolving in
thermodynamic equilibrium states (cf. [144]).

In application of classical theory, most of its extensions and generalizations to precipitation
processes in solid and liquid solutions, the work of cluster formation is expressed as

AG(n) = —nAu+ oA, Ap = p(p,T,c) — po(p, T). (5.2)

Here Ay is the difference of the chemical potential per particle in the ambient and the newly
evolving phases (specified by a subscript «) at a pressure p and a temperature 7', o is the
specific interfacial energy (or surface tension) and A is the surface area of the cluster. If the
surface area is expressed via the number of particles in the cluster according to

AT 3 2 3 2 2/3 AT 5
Vo = ?R =wsn, A=4n7R° =4r s ntt, W = ay (5.3)
we may write equivalently
) 3w 2/3
AG(n) = —nAp + ayn®3, ag = 4dmo ( 4;) . (5.4)

Here V,, is the volume and R is the radius of a (spherical) cluster; w, denotes the volume per
particle and a a characteristic size parameter of the particles in the newly evolving phase.

The critical cluster size in nucleation corresponds to a maximum of AG; it is determined
by

2 1
né/s = ﬁ, AG() = gagng/?’. (5.5
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For thermodynamically unstable initial states, AG may be written as

AG n \?/3 n
= — -2 —. .
AG( i <nc) <nc) 60

The so-called equilibrium distribution function f (6)(71) (cf. Eq. (5.1)) gets in this case the

form
e /3
£ (n) AG n\’ n
= — |3 — —2(— . 5.7
( 7 ) TP ke [P e o7
It is qualitatively presented in Figure 2.3. The function has a minimum for n = n. and
diverges for large values of (n/n.).
Based on the methods of equilibrium statistical physics, Fisher [69] developed an alterna-
tive derivation of dependences quite similar to Eq. (5.1). Fisher did not employ the second of
mentioned Frenkel’s assumptions. As a consequence, the expression for the preexponential

factor remains undefined in his approach. Fisher introduced, in addition, a term (k77 Inn)
into the expression for the work of cluster formation resulting thus in

AG(n) = —nAp + asn?®/® + kgTrlnn . (5.8)

The actual value of 7 depends on the specific properties of the substance considered. It can
vary, according to Fisher’s approach, in the range 2.0 < 7 < 2.5 [69, 125]. In the vicinity
of the liquid—gas critical point 7T, the differences between the liquid and the gas vanish, the
relations Ay — 0 and ag — 0 hold, and Fisher’s model yields

AG(n)|TﬁTC =kgTTlnn, 1(«“8) (n) o oxn . 5.9

The occurrence of such dependences in the vicinity of the liquid—gas or percolation critical
points was reconfirmed by alternative approaches [31, 61,74, 199, 319] giving in this way
support to Fisher’s proposal. Moreover, for thermodynamic equilibrium states Fisher’s model
is equivalent, again, to Boltzmann-type heterophase fluctuations with a somewhat modified
expression for the work of cluster formation as compared with the classical result. However,
in thermodynamically unstable states (i.e., below and at a sufficiently large distance from 7¢)
with respect to Fisher’s model the same conclusions of inconsistency have to be drawn as
done in the analysis of the so-called equilibrium distribution of classical nucleation theory.
Namely, Fisher’s model is inappropriate to describe real cluster-size distributions evolving in
thermodynamically unstable initial states beyond the liquid—gas critical point.

This conclusion follows from the method applied in the derivation which is based on equi-
librium statistical physics. Moreover, it is also evident for physical reasons. For thermody-
namically unstable states beyond the critical point, Fisher’s model results, again, in qualita-
tively similar dependences as shown in Figure 2.3. However, the only (time-independent)
equilibrium distribution evolving in the course of time consists of one large cluster (the newly
evolving bulk phase in the ambient phase) surrounded eventually by a distribution of small
clusters (monomers, dimers, etc.).
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5.3  Thermodynamic Approach 175

The same conclusions can be drawn with respect to any other similar expressions result-
ing from different approaches in the determination of the work of cluster formation, AG
(cf. [135]). Such distributions may be of use in order to determine the emission coefficients
from the expressions for the coefficients of aggregation by applying the principle of detailed
balancing to an artificial model state (with all the problems involved in such a procedure
(cf. Chapter 2 and [243,293,302,306])). However, the application of these expressions to
the description of real cluster-size distributions formed in nucleation—growth processes is, in
general, incorrect.

5.3 Thermodynamic Approach: On the Possibility of
Evolution of Monodisperse Cluster-Size Distributions

If we consider the process of precipitation in solutions at constant values of the external pres-
sure, p, and temperature, 7', the characteristic thermodynamic potential is the Gibbs free en-
ergy, G. Provided a spontaneous evolution of an ensemble of clusters into a monodisperse
cluster-size distribution would be possible, such a state should correspond then to a minimum
of G for a given number, IV, of clusters in the system (see, e.g., [133]). To check whether such
minimum exists we may assume from the very beginning that all clusters are of the same size.
We have to determine then only the value of the size of the clusters at which the Gibbs free
energy reaches eventually a minimum.

If N clusters of the same size are formed in the system, the change of the Gibbs free
energy, due to the formation of such a monodisperse distribution, may be expressed as [220,
248,331]

k
AG = (p—pa)NVa + > [ttja(pa: To{za}) — 1 (p, T, {2})] Nnjo
j=1

k
+ ) " njo 1y (p. T, {z}) — pjo(p, T, {xo})] + NoA. (5.10)

j=1

Here the general case is considered that the clusters of the newly evolving phase may be
composed of particles of all of the different j = 1,2, ..., k components present in the ambient
phase.

i and ;0 denote the chemical potentials of the & different cluster components in the ho-
mogeneous initial state and 7, is the number of particles of the component j (j = 1,2,...,k)
in a cluster while 7o refers to the number of particles of component j in the homogeneous
initial state; y; denotes the actual value of the chemical potential in the ambient phase; {z }
is the set of independent molar fractions in the cluster phase, while {«} and {x} refer to the
actual and initial values of these quantities in the ambient phase. The second sum on the right-
hand side of Eq. (5.10) reflects changes of the state of the system resulting from processes of
cluster formation and growth. Such changes are an essential prerequisite for the evolution of
monodisperse distributions. If such variations do not occur, no thermodynamic factors exist
leading to an inhibition of the growth process.

www.iran—m L\V‘dLLC() m

Age Crwdivs 9 Olgils @ yo



176 5 Shapes of Cluster-Size Distributions Evolving in Nucleation and Growth Processes

The necessary equilibrium conditions may be obtained from Eq. (5.10) in the form

0A
dAG =N (p—Pa—i—Ua—%) dVa-F;(Mja—,U/j) dnja =0. (5.11)

Hereby it is assumed that the number of clusters, IV, is kept constant. Since n;, and V,
have to be considered as independent variables, the necessary equilibrium conditions for the
considered monodisperse distribution are given by

0A 20
P—pa‘f'aa—va—o or Pa=P= T (5.12)
Hjo (pouT; {xa}) :/’(‘j (p7Ta {x})7 J:172a7k (513)

However, if more than one cluster is present in the system (N > 1), the considered state
is an unstable equilibrium state of saddle-point type [220, 225,229,331]. Small fluctuations
will always lead to processes destroying such monodisperse states. The number of clusters
decreases in time while their average size increases. This way, a process takes place in the
system denoted commonly as coarsening or Ostwald ripening (see Chapter 4 and [155, 230,
289]). There exists one and only one equilibrium state consisting of one large cluster in the
otherwise homogeneous ambient phase (cf. also [32,230]).

To verify this statement, we write down the Gibbs free energy as a function of all inde-
pendent variables. These are the volume, V,,, the numbers of particles, n;,, of the different
components in a cluster, and the total number of clusters, N. The values of the parameters,
except IV, are given by Eqs. (5.12) and (5.13). They depend on the total number of clusters,
N, present in the system (via the molar fractions {2} of different components in the ambient
phase). For the states, obeying the necessary thermodynamic equilibrium conditions, we thus
have

AG = AG [Vo(N),n1a(N), ... ,nka(N), N]. (5.14)
By taking the derivative of Eq. (5.14) with respect to N we obtain

dAG|  0AG

dnjo , OAG
AN |y OVa

AN N |y

dV, OAG
(eq) aN Z

(5.15)

k
— Onja

j=1 (eq)

Once the necessary thermodynamic equilibrium conditions are fulfilled, the partial derivatives

0AG
oVy

e

3nja

—0 (5.16)

(eq)

(eq)

are equal to zero (cf. Eq. (5.11)). Taking the partial derivative of Eq. (5.10) with respect to IV,
the subsequent substitution of the necessary equilibrium conditions (5.12) and (5.13) yields

dAG
dN

1
= gaA. (5.17)

(eq)
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5.3  Thermodynamic Approach 177

Comparing different monodisperse cluster-size distributions obeying the necessary ther-
modynamic equilibrium conditions, the value of the thermodynamic potential decreases with
a decreasing number of clusters in the system. Consequently, processes of evolution will occur
in the system resulting in the decrease of the number of clusters until only one cluster remains
in the system (cf., e.g., [32,230]). This conclusion may be verified in a more general approach
also by carrying out a stability analysis of the considered state of the system (cf. [225]).

This stage of evolution, characterized by a decrease of the number of clusters in the system
and an increase of their average size, is found quite generally in very different systems. The
thermodynamic background is always the same; it consists in the decrease of the surface
contributions to the characteristic thermodynamic potential at nearly constant bulk terms. It is
the basic origin of coarsening discussed in detail in Chapter 4. Of course, the situation may
occur that, though processes of coarsening are thermodynamically favorable, they may not
take place due to the inhibition of the kinetics of possible processes of evolution to the more
stable states (kinetic stabilization). In particular, this may be the case if the surface tension (or
the specific interfacial energy) has relatively low values. Such effects may be of importance in
the vicinity of the critical point (see also the analysis performed in subsequent sections). Such
possibility is excluded here so far from the consideration.

Reiss and Kegel [209] and Gross [92] (in another context) suggested recently that mixing
contributions may also act as a stabilizing factor. However, the determination of the mixing
contributions is, in general, a highly complicated problem. For this reason, its possible effect
on the shape of the cluster-size distribution function is not considered here in detail. With
respect to precipitation in solid and liquid solutions as well as condensation of gases [242],
such contributions do not change, in general, the conclusions as outlined above.

As already mentioned, from a thermodynamic point of view the behavior as analyzed
above is connected with a minimization of the surface contributions to the Gibbs free energy
for an approximately constant value of the amount of the newly evolving bulk phase. Devia-
tions from such behavior occur only when additional factors exist inhibiting the growth. Such
factors led to additional terms in the work of cluster formation increasing more rapidly than
linear with the volume of a cluster [220, 229, 331]. Indeed, let us assume that the matrix—
cluster interaction (e.g., elastic or electric fields) leads to additional terms NAG()(V,,) in
AG. The modified expression for AG, denoted as AG (mod) ' then gets the form

AGED = AG + NAGE)(V,), (5.18)

where AG is given by Eq. (5.10), again. The modified necessary equilibrium conditions read,
now,

0A OAGE) (Vo)
— Pa =Y 1
P — Pa + aava + av. 0 (5.19)

Mjoz(ponTa {xa}) :/jfj(p7T7 {1’}), .7 = 1727"'7k~ (520)

Moreover, instead of Eq. (5.17) we obtain

dAG(mOd)

OAGE) (V)
dN Vo

oV (5.21)

_loag {AG(E)(VQ)

(eq)
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178 5 Shapes of Cluster-Size Distributions Evolving in Nucleation and Growth Processes

Provided AG®)(V,,) behaves as AG(®)(V,,) = &V2, then a minimum of AG(™°%) exists for
finite values of NV but only when § > 1 holds.

Ideas of this kind have been successfully applied to the theoretical interpretation of the
kinetics of coarsening in highly viscous glass-forming melts in the vicinity of the temperature
of vitrification T}, [94,229]. In such cases, elastic stresses may lead indeed to such additional
terms as discussed above. A particular example in this respect will be analyzed in short; a
more detailed analysis is given in Chapter 6.

The mechanism of stabilization as discussed here is connected with cluster—matrix inter-
actions. There exist additional mechanisms connected with cluster—cluster interactions as an-
alyzed, e.g., for the case of elastic strains in solid solutions by Kawasaki and Enomoto [122].
Such possibility is also not considered here. Note that in the analysis no restriction was made
concerning the properties of the cluster phase. The results are valid thus both for liquid and
solid clusters as well as for bubbles (cf. also [227,228]).

5.4 Dynamical Approach

5.4.1 Basic Kinetic Equations: General Expression

In the considered, now, kinetic approach, the state of the system is characterized by a distribu-
tion function with respect to cluster sizes f(n,t). The distribution function f(n,t) represents
the number (or number density in a continuous description) of clusters of the newly evolv-
ing phase per unit volume containing n monomeric building units. These building units may
consist of atoms, molecules, or even complex aggregates with a definite stoichiometric com-
position (cf. [243,293]).

As mentioned, the growth, respectively, decay of the clusters proceeds via emission or
aggregation of single particles. These processes are considered as independent. The proba-
bility of the respective elementary process to proceed in a time interval At may be written,
therefore, as wAt. The respective probabilities that at such a time interval two elementary pro-
cesses of the same type occur are given thus by (wAt)2. Going over to the limit At — 0, such
higher order terms may be neglected. With above assumptions, the change of the distribution
function f(n,t) is governed by the following set of kinetic equations (see also Section 2.2):

df(n,t) _ w(+) f(n—1,t) + wg;_)lmf(n +1,¢)

ot n—1n
—wh ) ) —wl ) fnt) (5.22)
Here w;t)l_’n is the probability per unit time that to a cluster of size (n — 1) a single particle

is added. The coefficients wg,:z_l specify similarly emission processes of single particles.
The first subscript refers always to the initial state, and the second one to the final state of the
process.

The above equation can be written in a more compact form by introducing fluxes, J(n),

in cluster-size space. With the notations

Jn—1,6) =wlD  fn—1,0) —wl)_ f(n,t), (5.23)
T(nyt) = wit) f(nt) — w( L fn+1,0), (5.24)
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5.4 Dynamical Approach 179

we have
df (n,t)
ot
As shown in Chapter 2, this general scheme can be extended easily to cases when more than
one parameter is required for an appropriate description of cluster formation. However, in
the present analysis we will restrict ourselves in the kinetic description to cases when the

state of the cluster is characterized by only one parameter n (for generalizations see, e.g.,
[28,29,296,306]).

—  {J(nt)— J(n - 1,0)}. (5.25)

5.4.2 Determination of the Coefficients of Emission

For an application of the general equations as outlined in the preceding section, the kinetic
coefficients w(*) and w(~) have to be determined. As a first step, we express the emission
coefficients w(~) through the coefficients of aggregation w(*).

The required relation between the kinetic coefficients can be found without reference to
the so-called equilibrium distributions with respect to cluster sizes and Szilard’s model. As
shown in Chapter 2 (see also [293,306]), quite generally the following relation is fulfilled:

(+) (n)
Wy, ’ T7 T Mo ) T

(L_)l,’rl — ex ,U(p C) /J“ (pCK ) . (526)
wn,nfl kBT

Here u(p, T, c) is the chemical potential of the segregating particles in the solution (at given
values of pressure, p, temperature, 7', and concentration, c) while ,u((xn) refers to the respective
values in the cluster including interfacial and eventually other possible finite size effects (for
the thermodynamic parameters p,, and 7" specifying the state of the bulk cluster phase).

Equation (5.26) is also valid for nucleation in multicomponent systems, nonisothermal
nucleation etc. In limiting cases, like nucleation in one-component systems at given values
of pressure and temperature, this equation may be rewritten in an alternative way. For such
purposes, we introduce the difference of the Gibbs free energy AG(n), again. As already
mentioned, AG(n) is equal to the change of the Gibbs free energy, when, at constant values
of external pressure and temperature, a cluster consisting of n single particles is formed. We
have

AG(n) = Gster) () — nu(p, T, c), (5.27)

where G(¢Uster) is the contribution of the cluster to the thermodynamic potential of the system
including interfacial and other possible additional terms. With this equation, we may write

AG(n) — AG(n — 1) = Geluster) (n) — Gleluster) (1) — 1y(p, T, ¢) . (5.28)
Moreover, by a Taylor expansion of G(¢1ust") (n, — 1) we get

aG(clustcr)
on (5.29)
= G () — ), T).

Here the definition of the chemical potential as ;1 = (0G/0n) was taken into account.

G(clustcr) (TL _ 1) _ G(clustcr) (Tl)
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180 5 Shapes of Cluster-Size Distributions Evolving in Nucleation and Growth Processes

A substitution into Eq. (5.28) yields
AG(n) = AG(n — 1) = pu{? (pa, T) — p(p, T ), (5.30)

resulting in (cf. Eq. (5.26))

( )
Wy ) _exp{—[AG(n)_AG(n_l)]}. (531)

o Rl

w!
Note that this derivation is valid generally independent of any particular proposals with respect
to the detailed form of the expression for the work of cluster formation.

Moreover, by introducing an auxiliary function f(*)(n) as

A
¥ (n) = exp {— ki(;) } (5.32)
we may rewrite Eq. (5.31) in the form
w9
5 T . (5.33)
Wy g fH(n—1)

In the approach outlined, f*(n) does not have, in general, the meaning of a distribution
function but is, as noted, some auxiliary mathematical quantity. In this way, in our approach
the relation between the coefficients of aggregation and emission of single particles may be
expressed by functions of the form as given by Eq. (5.1), again, but without assigning the
meaning of a cluster-size distribution to them. This way, as an additional advantage the prob-
lem of determination of the preexponential factor in the so-called equilibrium distributions
does not occur in our method (cf. Chapter 2 and [306, 352, 353]).

In true thermodynamic equilibrium states, detailed balancing holds and the conditions
J(n) = 0 have to be fulfilled. With Egs. (5.24) and (5.31) we then have

f(eq)(n) exp{%(;)} = flea) (n+1) exp{%} , (5.34)

where f(°9)(n) is a real cluster-size distribution evolving in the course of time in thermody-
namic equilibrium states. Since Eqgs. (5.34) have to be fulfilled for any value of n, the relation

AG(n)
) () — Aoxpd
feY(n)=Ae p{ T } (5.35)

is obtained as the solution. For thermodynamic equilibrium states, the set of kinetic equations
leads, therefore, to statistical cluster distributions or stationary cluster-size distributions of
Boltzmann-type heterophase fluctuations (cf. Eq. (5.1)) as discussed in detail in Section 5.2.
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5.4 Dynamical Approach 181

5.4.3 Determination of the Coefficients of Aggregation
Considering n as a continuous variable, we get by a Taylor expansion of Eq. (5.25)

of(n,t) _ 9J(n,t)

ot on

(5.36)

On the other hand, the expression for the flux J(n) in cluster-size space, Eq. (5.24), may be
rewritten as

J(n,t) = wﬁi’szrlf(*)(n) { f(n,1) fln+1,1) }

fOm) fOm+1)

) e 0 f(n,t)
= —Wy nqrf (”){an [f(*)(n) . (5.37)
A substitution into Eq. (5.36) yields
T%{wnmﬂf (n) an \ FO ) (5.38)
or
of(nt) _ 0 f () [ 1 0AG() 01(n.1)
ot on {w"v"“ T on 0T T (5.39)

Equation (5.39) has the same structure as the relation describing the macroscopic deter-
ministic flow in three-dimensional space as well as diffusion processes of particles character-
ized by a volume concentration c, i.e., [151]

0
a—j = —V{[e(r,t)v] — DVec(r,t)}. (5.40)
Here v is the macroscopic (hydrodynamic) velocity of the particles while D is the diffusion
coefficient, connected with the diffusive motion of the considered component in real space. It
follows that the deterministic (macroscopic) velocity of motion in cluster-size space v(n, t) is
given by

1 0AG
v(n,t) = _wfz-j_errl {@—T#} ) (5.41)

(+)

while the diffusion coefficient in cluster-size space equals w,, ", ;.

5.4.4 Description of Growth Processes of Clusters

For diffusion-limited growth, the density of fluxes through the surface of a cluster with the
radius R is given by (e.g., [94])

. dc
in=-0 (5)

(5.42)

r=R
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or
. c—c¢
JR:—D< RR>. (5.43)
For the rate of change of the cluster radius with time one thus obtains
dR 1
—=——J 5.44
T o n (5.44)
or
dR D [c—cp Dc CR
dr _ D _ 1— 7) . 5.45
dt  co ( R > caR ( c (>45)

Here ¢, = (1/wjs) is the concentration of the segregating particles in the newly evolving phase
(cf. Eq. (5.3)).

Often it is assumed, in addition, that in the immediate vicinity of the clusters in the matrix
a local equilibrium concentration is established. Thus cr may be set equal to the equilibrium
concentration cgf) of the segregating particles in the vicinity of a cluster of size R. Its value
is given by (cf. [94])

20’0} 1 20[

R) [e%) s _ 0o 2

el = el [exp (k—T E)] =y [exp (r W)] ; (5.46)
where ng ) is the equilil)rium concentration of the segregating par ticles in the ambient phase

for an equilibrium coexistence of both phases at a planar interface.
The concentration c in the undisturbed matrix corresponds, on the other hand, to a critical
cluster size R, determined by

2 1
c= cgg") [exp (;Bu;f PT)} . (5.47)

A substitution of Egs. (5.46) and (5.47) into Eq. (5.45) and a subsequent Taylor expansion of
the exponential functions yields

dR 20Dc¢ |1 1 1
G kT [E (E - Tzﬂ : (5.48)

Equation (5.48) is the basic relation for the description of diffusion-limited precipitation
processes. It can be generalized in order to describe other mechanisms of growth as well. The
result of such an extension can be written in the general form (see [289]) as

A TS|
R R, R
where a. is a length parameter reflecting specific properties of the considered growth mech-
anism. Different growth mechanisms are described by this equation for different values of

dR _ 20Dc
At ZkpT

, (5.49)
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5.4 Dynamical Approach 183

(v = 0: ballistic or interface kinetic limited growth; v = 1: diffusion-limited growth; v = 2:
diffusion along grain boundaries; v = 3: diffusion in a dislocation network [289]). Of course,
for each particular case, different values of the diffusion coefficient D., have to be chosen.

In general, both processes of transport of the segregating particles to the cluster as well as
the rate of incorporation may be of importance for the rate of cluster growth. Assuming bulk
diffusion as the transport mechanism, the flux in the immediate vicinity of the cluster surface
is given by

_ c—c
JR:—D< RR), (5.50)
while the flux through the interface is determined by
CR — ch)
jr=—DW aiq : (5.51)

In Eq. (5.51) the parameter a,, is identified with an interatomic or average jump distance of
the considered solution. It is defined, similar to Eq. (5.3), via the average volume w,,, occupied
by a particle in the ambient phase, i.e., as

4
b,
3
The quantity D in Eq. (5.50) is the diffusion coefficient for bulk diffusion, while D) in
Eq. (5.51) is the respective measure of the mobility for processes of incorporation of particles

to the cluster.
Assuming steady-state conditions, we have

C— CR CR — C((eR)
D <—) =pH | £ =4 |, (5.53)
R Am,

The concentration in the immediate vicinity of the cluster is then given by

(5 (2] ()

(5.52)

Wm =

Cr = 1 0] 7 (5.54)
() 6]
With Egs. (5.44), (5.51), and (5.54) we get similarly as in the derivation of Eq. (5.48)
20D™) 1 11
dR _ 20D e — )\ (5.55)
dt  ZkgTap, KD(*)) < R )} R. R
14+ || —=— —
D A

This equation contains both limiting cases of kinetic or ballistic growth (prevailing, in general,
in the initial stages of the nucleation—growth process), diffusion-limited growth (determining
the process at the later stages) as well as the transient behavior.
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184 5 Shapes of Cluster-Size Distributions Evolving in Nucleation and Growth Processes

5.4.5 Application to the Description of Nucleation

Equation (5.49) can be reformulated in terms of the number of particles n in the cluster. Such
a reformulation is required in order to apply Eq. (5.41) for a determination of the kinetic

coefficients wfﬁz 11- With Egs. (5.3) and (5.5) we obtain

_dn Ap a(ﬁ_l) R,

'U(n, t) = E = 47TD»YC (M) R('Y_Q) 1-— E (556)
or

dn Ap a,(yryil) ne\/3

S =anDic (kBT) N (Z) . (5.57)

= \n
)
According to Egs. (5.4) and (5.41) we get further
(v=1)
“  _ vt ay
Wy g = T 0AGH) 4rDc o o7 (- (5.58)
BT (52)]
In particular, for bulk diffusion-limited growth (v = 1), we find
3w 1/3
=+ s

wit) | =4nDe ( = ) n'/3 (5.59)

while for kinetically limited growth (v = 0),
w. \2/3

wh) ) =4rDWeay, (ws > n?/? (5.60)

holds. Proceeding in the same way with Eq. (5.55), we get
as
o (_) s
wit) | =4rDWe (—) n'/? m . (5.61)
| ’ ) ()]
1+ — ||n
D A

In this way, the determination of the kinetic coefficients is completed.
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5.4.6 Basic Kinetic Equations for Different Important Growth
Mechanisms

According to Egs. (5.22) and (5.31), we may rewrite the basic kinetic equations describing
nucleation and growth as

% = ’U)Elt)l,n {f(n — 1,t) — f(n7 t) exp |:

AG(n) 7€BATG(n - 1)} }

(5.62)
AG(n+1) — AG(n)] } |

) S f(nt) + f(n+1,8) exp
’ ]{ZBT

For diffusion-limited growth, the coefficients of aggregation are given by Eq. (5.59). In
most applications, the diffusion coefficient of the segregating particles is independent of clus-
ter size. For example, for perfect solutions the diffusion coefficients depend mainly on pres-
sure and temperature. For real solutions, a dependence on the concentrations or molar frac-
tions of the different components may occur as well [21,304]. Generally, in both cases the
diffusion coefficients are determined by the thermodynamic properties of the ambient phase
and do not depend on the size of the clusters.

In such cases, a new time scale may be introduced via

3w 1/3
dt’ = 4w D) (4—) dt. (5.63)

7

Equation (5.62) then gets the form

/
ofm.t) _ (¢ N L 1y —1,1) (5.64)
o' {5
eq
A H—A
B fn 4+ 1,¢) exp G(n+1) G(n)
kT
A - A -1
__c (n—1)Y3exp G(n) G(n—1) + a3l ),
G kT
eq
Similarly, we get for kinetically limited growth with
w. \2/3
dt" = 4rDWclXa,, ( : ) dt (5.65)
Wm
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the relation

af(n,t") _ c { _1)2/3 14" 5.66
ot <c£?)> (n—=1)"f(n—1,t") (5.66)
/ " ox AG(n—l—l)—AG(n)}}
+ 0B fn+1,t")e p[ knT
_ (é{))) {(n — 1)2/3 exp {AG(n) ;BATG(TL — 1)] + n2/3}f(n,t”).
Ceq

The general expression for wt) (cf. Eq. (5.61)) can be written as

D) as 13
sy o) 15 ) ()]
_) n o KD(*)) (asﬂ o . (5.67)
D A

[(Dz()*)) (smﬂ e (5.68)
T

the basic kinetic equation for the description of the time evolution of the cluster-size distribu-
tion function gets the form

‘With the notation

g(n) =

o5t _ (((;3) {(n ) g(n— O)fn— 1.7 569
0 g(n)f(n+1,t) exp [AG(" e AGW] }
S e e

gl 0.1,

The possibility of introduction of reduced time scales in the limiting cases of diffusion
and kinetic or ballistic growth implies that possible shapes of the cluster-size distributions
evolving in the course of time are independent of the value of the coefficient of diffusion.
Its value determines only the time scale of the process. In the general case, as expressed by
Eq. (5.69), the values of the diffusion coefficients retain some minor influence via the ratio
(D™ /D).
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5.5 Numerical Solution of the Kinetic Equations 187

Note, however, that the above conclusion was derived under the reasonable assumption
that the value of D is independent of cluster size n. As mentioned, this is indeed frequently
the case. However, if in the course of growth of a cluster the state of the matrix in the vicinity
of the cluster changes qualitatively (e.g., by evolution of elastic fields, segregation of some
component inhibiting the flux of the others to the cluster) or the state of the cluster changes in
dependence on its size, then effectively a cluster size dependence of the diffusion coefficient
occurs. In such cases, qualitative changes of the distribution functions have to be expected
(cf. [22]) as compared with the dependences described by Egs. (5.64), (5.66), and (5.69).

In this way, the basic kinetic equations, describing nucleation and growth for the consid-
ered growth equations, are finally established. The specific properties of the system under
consideration enter the description only via the respective expression for AG. Several cases
of particular interest will be analyzed in the subsequent section.

5.5 Numerical Solution of the Kinetic Equations

In the subsequent analysis, we would like to follow the time development of the cluster-size
distribution function for two cases: (i) The concentration of single particles per unit volume
(the supersaturation in the system) is kept constant, i.e., the equation

f(1,t) = ¢ = constant (5.70)

holds. (ii) The conservation of the total number of particles (single particles and particles
aggregated in clusters)

oo

an(n,t) = f(1,0) = ¢g = constant (5.71)

n=1
is taken into account. In both cases, we assume that in the initial state the segregating particles
are distributed in the ambient phase in the form of monomers, only, i.e., the relations

f(1,0) = ¢y, f(n,0)=0 for n>2 (5.72)
are fulfilled.

5.5.1 Precipitation in a Perfect Solution

As a first example, we consider the case of precipitation in a perfect solution. AG(n) is
chosen hereby in the classical form as expressed by Eq. (5.2) or (5.4). Moreover, for a perfect
solution the difference in the chemical potentials can be written as (e.g., [94,298])

Ap=kpTln| -5 ). (5.73)
()
eq

In the derivation of Eq. (5.73), the condition for equilibrium coexistence of both phases at a
planar interface,

1(p, T, c8e?)) = pa(p, T), (5.74)

was employed.
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A substitution of these expressions into Eq. (5.69) yields

0f(n.t") _ <C(t’)> (n—1)"3g(n— 1) f(n—1,t) (5.75)
ot )
+n'/3 exp <3I@T(21;%)1/3) g(n)f(n+1,t")

—nl/? [gm) (fiﬂ)

— 1\ 2 )
+<nn > g(n—l)exp(@%)] f(n,t".

In Eq. (5.75), the approximations

20[2

A 1)-A ~ A — = 5.76
2

AG(n) — AG(n —1) 2 —Ap + 22 (5.77)
3n1/3

were used. This was done in order to get some insight into the structure of the different terms
on the right-hand side of Eq. (5.75). In the numerical implementation, latter approximation is
always omitted.

In Figures 5.1-5.6 results of numerical solutions of Eq. (5.75) are shown (without applying
the approximations (5.76) and (5.77)). It is assumed that in the initial state the segregating
phase is distributed in the ambient phase in form of single particles only (cf. Eq. (5.72)). The
following values of the parameters are used:

20

Cq k BT

Ca =2.3%x10%m™3, DY) = D, Uy = Q. (5.79)

Figure 5.1 shows the shape of the cluster-size distribution function for different moments

of time provided the supersaturation in the system is artificially kept constant. In the course

of time a steady-state distribution is approached, which is, at least qualitatively, well-approxi-

mated by the analytical expressions derived earlier in Chapter 3 (see also [298,300,302,307]).

Figure 5.2 shows similarly the evolution of the cluster-size distribution function, however,

this time for the case that conservation of the total number of segregating particles is taken

into account. As seen, after some initial period of time, where the behavior resembles the

previous case, a second maximum for large cluster sizes develops. This maximum is formed

by clusters of sizes being of the same order of magnitude or larger than the current value of

the critical cluster size (cf. also [178,350]). By arrows, in Figure 5.2 the actual value of the
critical cluster size is indicated. It is determined according to Egs. (5.5) and (5.73) by

= 0.8 nm, ) = 3.74 x 10 %cq, (5.78)

2
nl/3 = a2 . (5.80)

3kpTIn | ——
)
eq
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Figure 5.1: Different stages in the time evolution of the steady-state cluster-size distribution, as obtained
by a numerical solution of the kinetic equations (5.75), if constancy of the supersaturation (concentration
of monomeric building units) in the system is sustained by some appropriate mechanism (cf. Eq. (5.70)).
The initial supersaturation was set equal to (c/ c((ezo)) = 10. The following values of the parameters are
used here and throughout: Specific interfacial energy ¢ = 0.08 Jm ™2, particle concentration in the
newly evolving phase ¢, = 2.3 x 10%®* m~3, equilibrium solubility at a temperature T = 731 K equals
cg‘:f) = 8.6 x 10%® m~3, radius of the segregating particles R = 2.2 X 10710 m, D& = D,as =am.
Note, however, that only a combination of these parameters is required for the solution of the kinetic

equations.

As shown in Figure 5.3, for n < npax the distribution function with respect to cluster
sizes can be well approximated by dependences of the form

f(n) oc n=7efr, (5.81)

For a given value of the initial supersaturation, the parameters 7.g as well as ny,,x vary hereby
in dependence on time.

In Figure 5.4, the parameters 7.g and nyax are shown for different values of the initial
supersaturation in dependence on time. For the considered range of initial supersaturations,
values of T.g in the range

2< 7o <6 (5.82)

are observed.

Moreover, at certain moments of time discontinuities in the 7og vs t' and nyax vs t' de-
pendences occur. This effect is connected with the formation of the second maximum in the
cluster-size distributions (cf. Figure 5.2). Once such a maximum appears, dependences of the
form as given by Eq. (5.81) can be applied only to the part of the distribution corresponding
to relatively small cluster sizes. A qualitatively similar behavior was found also earlier for the
limiting cases of diffusion and kinetic limited growth [22, 164,240].
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Figure 5.2: Different stages in the evolution of the cluster-size distribution f(n,t) if the condition of
conservation of the total number of monomers (Eq. (5.71)) is taken into account. In the first stages of
the process monotonically decreasing distributions develop continuously and transform further into a
bimodal distribution. By arrows the actual value of the critical cluster size is indicated.

The motion of the maximum to higher values of the cluster size is accompanied by a
steepening of the distribution at smaller sizes and an increase of the critical cluster size. After
the first stages, characterized by dominating nucleation accompanied by an widely indepen-
dent growth of the already formed supercritical clusters, a third relatively slow stage of the
transformation begins. The further evolution, denoted as coarsening or Ostwald ripening, is
determined by dependences described in detail in the preceding Chapter 4 and established
theoretically first by the author in cooperation with Lifshitz [155].

For a verification of the statement concerning the general course of the phase transition, in
Figure 5.5, typical characteristics of a system undergoing a precipitation process are shown.
The three different stages of dominating nucleation, dominating independent growth, and
coarsening are clearly distinguishable.

In Figure 5.6 the distribution function

F(R,Y)R., u= Rﬁ (5.83)

in reduced variables is shown. An integration of this equation over all possible values of « in
the range (0 < u < 00) gives

/go(u,t’) du = ﬁ /f(R7 t)dR =1, (5.84)

which confirms that ¢(u, t') is normalized to one.

It is seen that in the course of the evolution a time-independent cluster-size distribution in
reduced variables is established. The approach of a time-independent distribution in reduced
coordinates is an universal feature of the late stages of coarsening. It remains true even if

@(uv t/) = N(t’)
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Figure 5.3: Log-log dependence of the size distribution function f(n,t) vs n for different moments
of reduced time (t' = 0.9, 1.9, 3.9). For cluster sizes less than a certain value nm,.x the distributions
obtained numerically (circles) can be well fitted by dependences of the form f(n) oc n™ e with dif-
ferent values of 7eg (dotted lines). The respective values of T.g are given in the figures. The initial

supersaturation was chosen to be equal to (¢/c{e”) = 10.

additional thermodynamic and kinetic factors, affecting the coarsening process, are taken into
consideration (see Chapter 4 and [107,161,171, 184,237,290,294]). Such effects may lead to
additional terms in the kinetic equations. In such cases, the shape of this distribution may dif-
fer from the form as shown on the figure. For example, it was shown that external noise [161]
or spatial inhomogeneities [184] may result into a broadening of the distribution function (cf.
also Chapter 6). Another example, where a qualitative change of the asymptotic distribution
occurs, is discussed below.
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Figure 5.4: Values of the parameters nmax and Teq as functions of time (in reduced units) for different
values of the initial supersaturation [(c/ c&.?f’)) =4,5,...,20]

5.5.2 Effect of Nonlinear Inhibition of Cluster Growth on the Shape of
the Cluster-Size Distributions

Interactions between growing cluster and ambient phase may result in the evolution of mono-

disperse cluster-size distributions. As a precondition for such behavior, the additional term in

the work of formation of critical clusters must grow more rapidly than linear with the volume

of the cluster (cf. [94, 220, 229]; Section 5.3). Particular examples, where such effects may

occur, are precipitation processes in highly viscous glass-forming melts, polymers or porous
materials (see [94, 184,232,233,237,290] and Chapter 6). In the simplest case, we may write

AG(n) = —nAp + agn®3 4 knP. (5.85)

The term xn® describes here the influence of additional inhibiting factors evolving in the
course of the transformation on cluster growth (e.g., elastic strains).
For 8 > 1, we may reformulate Eq. (5.85) as

AG(n) = —nAp + apn?/3, Apt = Ay — kB, (5.86)

For the considered conditions, the effective driving force of the transformation A;ﬁﬂ de-
creases monotonically with increasing cluster size resulting, finally, in a total inhibition of the
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Figure 5.5: Evolution of characteristic properties of a system undergoing a precipitation process. Top:
Change of the supersaturation as a function of time; Center: Change of the average (full curve) and the
critical cluster sizes (dotted curve) in the course of the transformation; Boffom: Change of the number
of clusters in the system. Hereby the dotted curve counts all clusters in the system, while the full curve

refers to clusters with a radius R > 0.6 nm.

growth. Since this conclusion holds for single clusters, it is also valid for the evolution of

ensembles of clusters as pointed out already in Section 5.3.
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Figure 5.6: Cluster-size distribution function ¢(u, ') in reduced variables u = (R/R.) for different
moments of time (cf. Egs. (5.80), (5.83), and (5.84)). In the course of the evolution, a time-independent
shape develops as predicted first by Lifshitz and Slezov [155] (see Chapter 4).

If Ap is expressed, again, via Eq. (5.73), the kinetic equations (5.69) take the form

ot (o0)

Ceq

209 kB(n +1)871 ,
-+ 7’L1/3g(n) exp <W> exp (T) f(TL -+ 1,t )

c(t
—nl/3 l( ((002> g(n)
Coq
n—1\"? 209 kBnP~1
* ( n ) gln = 1) exp (3kBTn1/3) eXp( kT >

For the numerical calculations, shown in Figure 5.7, we set 5 = 2 [229] and x = 0.01kgT
x In[eg/ c.(g?f)], where ¢ is the concentration of single particles in the homogeneous initial
state. As shown in the figure, in the course of time a relatively monodisperse cluster-size dis-
tribution develops due to the nonlinear inhibition of cluster growth caused by matrix—cluster
interactions.

For other kinds of rheological behavior, i.e., if the matrix acts as a viscoelastic body, a
wide spectrum of kinetic laws for the description of the process of Ostwald ripening may
be obtained [180,233]. A particularly interesting example consists in a damped oscillatory
approach to the coarsening. Such a kind of behavior was theoretically predicted by Moller

of(nt') _ (c(t’)> (n—1)Y3g(n—1)f(n - 1,¢) (5.87)

f(n,t).
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Figure 5.7: Evolution of the cluster-size distribution function for the case of nonlinear inhibition of
cluster growth. The evolution is described, again, by the most general expression for the set of kinetic
equations (5.87). In the calculations, D is set equal to D(*>, am = as, 3 is chosen equal to 2, while « is
set equal to k = 0.01kgT In[co/ cgzo)]. In the course of time, a monodisperse cluster-size distribution
is established. Such kind of behavior is always to be expected if the inequality 5 > 1 is fulfilled. Note

also the peculiarities in the approach to the final distribution.

et al. [104, 183]. As it seems, these results are applicable directly to experimental findings
reported by Morosova [181]. A more detailed comparison of experimental and theoretical
results is thus highly desirable and given in Chapter 6.
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5.5.3 Application of Fisher’s Expression for the Work of Cluster
Formation

Applying, instead of Eq. (5.4), Fisher’s expression (5.8) for the work of cluster formation,
Egs. (5.69) and (5.73) yield, approximately,

Ceq

n+1Y\ 2«
+n1/3 (T) exp <m> g(n)f(n—l— 17tl)

_ ’I’Ll/3 [C(t/) (n)

eSSy
&)

n—1\"3 n \ 209 ,
+g(n—1)( n ) (ﬁ) eXp(3kBTn1/3) f(, £).

It is obvious (cf. also [69]) that the exponential terms in Eq. (5.88) will dominate, in
general, the behavior compared with the factors (n/(n+1))” or (n/(n — 1))". The evolution
of the cluster-size distribution function is, therefore, in general only slightly affected by the
additional term (kgT'7Inn). This conclusion can be verified by a numerical solution of the
kinetic equations describing nucleation and growth.

The results of the solution of Eq. (5.88) are shown in Figure 5.8. Moreover, in Figure 5.9,
the same curves are given in logarithmic coordinates. It can be seen that in the range n < Nax
curves of the shape as described by Eq. (5.81) give a good approximation of the results. In
Figure 5.10, the values of 7. and n,,x are shown as functions of time for different values
of the initial supersaturations. It is verified easily that 7.¢ varies in the range as indicated in
Eq. (5.82), again.

Similarly to calculations carried out with the classical expression for AG(n) (cf. also
[240]), in the initial stages of the nucleation—growth processes and in the range n < nyax, the
distributions can be well approximated by curves of the type

fn) ocn=Ter 2 < Teg < 6, (5.89)

again. The values of 7. and 1., depend hereby on the initial supersaturation and the time
the clustering process proceeds. The exponent 7.¢ is determined thus kinetically, its value is
not interrelated with the parameter 7 occurring in Fisher’s expression for the work of cluster
formation (Eq. (5.8)).

The situation becomes, however, qualitatively different in the vicinity of the critical point.
As mentioned in Section 5.2, near the critical point the differences between liquid and gas
phases disappear. Fisher’s statistical droplet model results in this region in a cluster-size dis-
tribution function with the shape

f)|p_p, xn™7, 2 <71 <2.5. (5.90)
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Figure 5.8: Different stages in the evolution of the cluster-size distribution f(n, t) if Fisher’s expression
for the work of cluster formation is applied in the derivation of the kinetic equations describing nucle-
ation and growth. Again, the condition of conservation of the total number of monomers (Eq. (5.71))
is taken into account. Similarly to Figure 5.2, in the first stages of the process, monotonically decreas-
ing distributions develop continuously and transform further into a bimodal distribution. The initial

supersaturation is chosen equal to (¢/ c§3°>) = 10. The parameter 7 was set here equal to 2.5.

This result can be reestablished by the solution of the set of kinetic equations describing
nucleation and growth.
With Eq. (5.64) and AG(n) = kgT'7Inn we have in the vicinity of the critical point

%@‘;t/) = (n— )Y3g(n—1)f(n—1,t) (5.91)

SSTE (M)Tg(n)f(n 1,8)

n

= [0t + -0 () at0- 1] 0

n
It is easily verified that Eq. (5.90) represents, in this limiting case, the stationary solution of
this kinetic equation. As shown in Figure 5.11 the obtained time-dependent solutions tend to
this asymptotic solution at large times.

In the immediate vicinity of the critical point, the solution of the set of kinetic equations
results, consequently, in cluster-size distributions as predicted by Fisher’s statistical droplet
model. However, as seen in Figures 5.8-5.10, for thermodynamically unstable states beyond
the critical point, a quite different behavior is found in agreement with expectations outlined
in Section 5.2 (for a more detailed consideration of the properties of cluster ensembles in
the vicinity of the critical point and eventual shortcomings of the applied here method of
description in this region see, e.g., [26,31,74,319]).
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Figure 5.9: Log—log dependence of size distribution function f(n,t) on n at different moments of time

for diffusion-limited growth and an initial supersaturation ((c/ c£?>) = 10) for the curves shown in
Figure 5.8.

5.6 Selected Applications and Conclusions

Clustering processes occur in a variety of scientific and technological applications. As far as
the basic premises — existence of a critical cluster size, growth by aggregation or emission of
single building units of the newly evolving phase — are fulfilled the methods outlined can be
applied with success quite independently of specific features of the system considered. Spe-
cific properties of the system under consideration enter the description only via the appropriate
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Figure 5.10: Values of the parameters nmax and Teg as obtained numerically for diffusion-limited
growth and different values of the initial supersaturation [(c/ cég")) =4, 5, 7, 15, 20] applying Fisher’s
expression for the work of cluster formation.

choice of the aggregation rates and the work of cluster formation (cf. also [245]). In this way,
the results of the analysis may be of significance for very different processes.

In application to such a variety of phase formation processes, the following conclusions
can be drawn, among others, from the analysis:

(i) The so-called equilibrium distribution of classical nucleation theory, the statistical droplet
model developed by Fisher or similar expressions are, in general, inappropriate means
for an interpretation of experimental results on clustering processes. Attempts to connect
these distributions with the shapes of distributions observed experimentally (cf., e.g.,
[316]) or with basic features of the nucleation—growth process (e.g., [53,327]) are not
correct.

(ii) Fisher’s statistical droplet model describes experimentally observed cluster-size distri-
butions well in the immediate vicinity of the liquid—gas critical point. Here it leads to
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Figure 5.11: Solution of the set of kinetic equations (5.91) for initial states in the immediate vicinity of
the liquid—gas critical point. In this case, the curve f(n) o n~" is approached in the course of time as
predicted by Fisher’s statistical droplet model. As shown, the same dependence may be obtained also
as the stationary solution of the kinetic equations governing nucleation and growth. In the numerical
calculations, 7 was set equal to 2.5.

(iii)

@iv)

dependences of the form f(n) oc n~7, where 7 is determined by thermodynamic prop-
erties of the substance undergoing the transition.

Beyond the critical point in the region of thermodynamically unstable initial states, the
observation of distributions with a shape f(n) oc n~="# with 2 < 7.g < 6 in a certain
range of cluster-size space can be explained in the framework of a dynamic nucleation
and growth model as a consequence of clustering in a first-order phase transformation.
Hereby 7.g depends both on the initial supersaturation and the time interval where clus-
tering processes occur.

By applying Fisher’s expression for the work of cluster formation, Fisher’s statistical
distribution is retained in the dynamic approach as a limiting distribution reached for
large times for initial states located in the immediate vicinity of the critical point.

In this way, a straightforward explanation of the results of multifragmentation processes
in nuclear collisions can be given (cf. [182, 186, 199, 240]). Moreover, one may expect
that distributions of such a shape occur also frequently in condensation processes in ex-
panding atomic or molecular gases.

If the evolution proceeds over longer time intervals in unstable initial states beyond the
critical point, conservation of the total number of segregating particles results in the
evolution of a maximum at cluster sizes near to the critical one. Such property is found
independent of the mechanism of growth of the clusters.
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(v) In the majority of applications, the values of the diffusion coefficients affect only the
time scale of the processes but not the spectrum of possible shapes of the distribution
functions. Different types of distributions may occur only, if by various thermodynamic
or kinetic reasons the diffusion coefficients become effectively cluster-size dependent.

(vi) For example, provided kinetic inhibition and direct stabilizing cluster—cluster interac-
tions are of no significance, monodisperse cluster-size distributions may develop spon-
taneously only, if cluster—matrix interactions lead to additional terms in the expression
for the work of cluster formation. Such additional terms have to grow more rapidly than
linear with the volume of a cluster. Latter condition (and also the second of the first two
mentioned ones) are not fulfilled for bubbles in a bulk liquid. Consequently, the evo-
lution of monodisperse bubble-size distributions is such systems is not possible (cf. in
contrast [347,348] and also [354]). Therefore, the conclusion of the authors of [347,348]
concerning the possibility of evolution of monodisperse thermodynamically stabilized
bubble-size distributions in the bulk of a liquid—gas solution seems to be incorrect.

(vii) The results outlined may be applied as a means to propose realistic shapes of cluster-size
distributions for an interpretation of experimental results on scattering measurements
(cf. [343]). As shown above, in general, the distributions are not monodisperse. They
can be approximated by Gauss curves; however, the average value and the dispersity of
these curves increases with time. In the asymptotic stage of the transformation, analytic
expressions are available based on the Lifshitz—Slezov theory and its generalizations.

5.7 Discussion

It was shown in the present analysis that statistical approaches in determining cluster-size
distributions do not allow one to give, in general, an adequate description of experimental
results concerning possible shapes of cluster-size distributions evolving in nucleation—growth
processes. By this reason, dynamical approaches have to be applied allowing one to account
for the variation of the state of the system in the course of the process.

In the present investigation, only variations of the state of the system are considered con-
nected with the conservation of the total number of particles (free particles and particles ag-
gregated in clusters). The general kinetic equations allow us, of course, also an account of the
influence of variations of the external boundary conditions (e.g., pressure, temperature etc.)
on the shape of the cluster-size distributions. One important example in this respect consists
in the analysis of clustering in freely expanding gases [242]. As discussed in more detail
in [250], for precipitation processes in glasses and glass-forming melts — as another important
application — relaxation processes of the matrix may affect qualitatively the kinetics of the
precipitation processes resulting eventually in the evolution of bimodal cluster-size distribu-
tions, where both peaks are found at sufficiently large cluster sizes. In addition, particular
properties of the system under consideration may be reflected by an appropriate determination
of the work of cluster formation and the aggregation coefficients wﬁtz L1

The method employed here can also be extended without principal difficulties to cases
when more than one parameter is required to determine appropriately the state of the cluster
of the newly evolving phase. One example in this respect consists in the process of bubble
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202 5 Shapes of Cluster-Size Distributions Evolving in Nucleation and Growth Processes

formation in liquids. Another would be the process of precipitation in a solid solution when
one accounts for the possibility that the composition of the clusters is changed in the course
of the transformation [3, 249, 253,254]. Such effects may also result in modifications of the
shapes of cluster-size distributions as analyzed above.
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6 Coarsening Under the Influence of Elastic Stresses and in
Porous Materials

6.1 Introduction

Immediately after the formulation of the theoretical approach to coarsening, reviewed in Chap-
ter 4, the effect of elastic stresses on coarsening was analyzed in detail [154, 155]. Here the
case was considered that elastic stresses due to the formation of clusters of a newly evolving
phase result in stresses the energy of which increases linearly with the volume of the cluster.
The results of the analysis show that in this very frequently realized case, elastic stresses only
modify the kinetics of coarsening quantitatively but not qualitatively [154].

However, as it became evident in the experimental investigations of Gutzow and Pascova,
elastic stresses may change the kinetics of coarsening qualitatively [94,200]. The respective
results are illustrated in Figure 6.1. The theoretical analysis of the kinetics of coarsening in
these systems performed by Schmelzer, Gutzow, and Pascova [220, 223,224,229, 232,233]
led the authors to the conclusion that elastic stresses may under certain circumstances result in
a qualitative change of the coarsening kinetics. As shown by them, such inhibition of cluster
growth and coarsening occurs, when the elastic response of the matrix with respect to cluster
growth is accompanied by an increase of the total energy of elastic deformations growing more
rapidly than linear with the volume of the clusters. In these cases qualitative modifications of
the kinetics of coarsening due to cluster matrix interactions occur (see, e.g., [200]). The basic
ideas and main results of this theoretical approach are summarized in Section 6.2.

These analysis have been extended in a variety of common papers to the problem of the
kinetics of coarsening in porous materials [236,237,290]. The situation was/is here the fol-
lowing: Despite the variety of research done in the theoretical description of coarsening, or
Ostwald ripening, as the late stage of first-order phase transformations, most of the attempts
developed deal with a restricted problem only, when the matrix where the phase separation
process takes place can be considered as a homogeneous body allowing the formation and
the growth of clusters at any place with the same probability and the growth to a practically
arbitrary size. Spatial correlations occur in these cases via diffusional or elastic interactions
of the precipitates [110].

However, in a variety of applications precipitation and coarsening takes place in spatially
inhomogeneous systems, where pores may exist and precipitates form and grow inside the
pores. In these cases, pores can influence the maximum dimension of the clusters of the
newly evolving phase or result, at least, in a significant inhibition of cluster growth once the
dimension of the clusters become comparable with the pore sizes. Immediate applications of
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Figure 6.1: Time dependence of the average size of AgCl clusters segregating in a sodium metabo-
rate glass-forming melt. The temperature of the system, at which segregation processes take place, is
indicated at each curve. While in the first stage of the process the coarsening kinetics is described by
the derived in Chapter 4 asymptotic power laws (R)® o t, N oc ¢! [154,155] a finite stationary
value of the average cluster size and a constant number of clusters are established asymptotically in the
system [200].

such types of processes are precipitation in porous materials like vycor glasses and zeolithes,
they are of relevance also for the understanding of sintering processes (see, e.g., [83]).

The process of Ostwald ripening for the case when clusters are formed and grow only
inside the pores of a porous solid matrix was first analyzed in [236,237,290] and is described
here in Section 6.3. Hereby it is assumed that the solid can be considered as an Hookean
elastic body. This assumption implies that after the cluster has reached the size of the pore the
evolving elastic strains become sufficiently large as to prevent immediately any further growth
of the clusters. As can be seen, the kinetics of coarsening and the type of asymptotic solutions
is different as compared with the results obtained first by Lifshitz and Slezov ( [153—-155] and
Chapter 4).

There exists, however, the alternative possibility that the elastic strains evolving in the
course of growth of clusters of a new phase in a solid increase only slowly with increasing
cluster size but may reach, nevertheless, so large magnitudes with time as to stop the further
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6.2 Elastic Stresses Due to Cluster—-Matrix Interactions 205

growth. Coarsening in the system of such weak pores was described first in [290] and is
presented in Section 6.4.

In all the cases of coarsening in a porous matrix mentioned so far, the process was consid-
ered for the particular situation that the distribution of pores in the solid matrix is monodis-
perse, i.e., all pores are assumed to be of the same size. This simplifying assumption is, of
course, nonrealistic if real porous materials are to be considered. Therefore, in Section 6.5 a
generalization of the results outlined is performed for any particular arbitrary size distributions
of “hard,” nondeformable pores in the solid and in the case when the clusters of the new phase
are formed and grow only inside the pores. Finally, in Section 6.6 possible modifications of
the results are analyzed when stochastic effects (thermal noise) are taken into account into the
description of cluster growth (see also [290]).

Note that the mechanism of the influence of elastic strains on coarsening discussed here
is different from the type Kawasaki and Enomoto [122] later dealt with, where the inhibition,
respectively, acceleration of coarsening is due to elastic interactions between the growing or
dissolving clusters. In the case considered here, the inhibition is due to the cluster—matrix
interaction, which may also qualitatively affect the coarsening kinetics as will be shown in the
subsequent analysis (see also [220,232,233,236]).

6.2 Cluster Growth and Coarsening Under the Influence of
Elastic Stresses Due to Cluster—Matrix Interactions

6.2.1 Models of Elastic Stress in Cluster Growth and Coarsening

The most widely employed model describing the evolution of elastic stresses in phase transfor-
mations in solids is directed to the analysis of elastic stresses resulting from a misfit between
ambient and newly evolving phases [187]. Suppose, in the bulk of a solid phase, a cluster of a
new phase with a different specific volume is formed, the total energy of elastic deformations
®(%) resulting from the evolution of a cluster of volume V' may be written as

o) = V. (6.1)

The parameter € can be expressed via the elastic constants of both phases and an appropriately
defined misfit parameter. The change of the Gibbs free energy in cluster formation can then
be expressed as

AG =-—nAp+0cA+cV =-—n <Au — i) + gA. (6.2)

(63

Here c,, is the particle density of the cluster and n the number of particles in the cluster.

An inspection of Eq. (6.2) shows that the effect of elastic stresses on cluster growth does
not depend in this case on cluster size; they lead merely to a constant change of the driving
force of cluster growth. Consequently, elastic stresses of the considered type either prevent the
formation of a new phase at all or they lead to some redefinition of the parameters in the theory.
This is the case analyzed in the first papers on this topic by Lifshitz and the author [154].

www.iran—m L\V‘dLLC() m

Age Crwdivs 9 Olgils @ yo



206 6 Coarsening Under the Influence of Elastic Stresses and in Porous Materials

The situation may become, however, quite different if elastic stresses in segregation pro-
cesses are considered [220,223,224,229,232,233]. Let us suppose that one of the components
of a binary solution segregates and has a partial diffusion coefficient D considerably larger as
compared with the respective parameter of the ambient phase particles (or the second compo-
nent). In such cases, elastic stresses evolve in segregation resemble the behavior of an elastic
spring. For elastic strings, the force is proportional to elongation and the energy of elastic
deformation is proportional to elongation squared.

If the initial volume of a cluster, when such type of stresses begin to act, is denoted as 1,
then the elastic stresses in cluster growth caused by such mechanism of evolution of elastic
stresses can be written as [220,224,229]

BRTAY
o) — K%g(v — Vo), (6.3)
where
1 for V—-V,>0
t()(VVO){O for V-1,<0 64)

The parameter x is some combination of elastic constants, again.
The change of the Gibbs free energy in cluster formation can be written in this case as

ERTAY
AG = —ndu+ oA+ an/ - VW), (6.5)
0
or
. K (V — V0)2
AG = —n [Au o < T OV —Vy)| +0A. (6.6)

For this mode of evolution of elastic stresses, the effect of stresses increases with increasing
cluster size and may, consequently, also qualitatively change the kinetics of cluster growth
and coarsening. Therefore, the problem arises to develop a theory of cluster growth and
coarsening for such qualitatively different as analyzed in [154] type of stresses, when elastic
stresses increase more rapidly than linear with cluster volume.

6.2.2 Theoretical Description of Coarsening at a Nonlinear Increase of
the Energy of Elastic Deformations with Cluster Volume: A First
Approach

The first approach to the description of coarsening under the influence of elastic stresses —
developed by Schmelzer and Gutzow — was based on a thermodynamic analysis of the process
of first-order phase transitions [220,221,223,224,226,229,232-234] interpreting coarsening
as the evolution along some appropriately defined valleys of the thermodynamic potential
describing the system. It results in two differential equations describing the evolution in time
of the average cluster size (R) and the number of clusters N. The respective equations read
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6.2 Elastic Stresses Due to Cluster—-Matrix Interactions 207

for diffusion-limited growth

d(R)  sDe 1 3 o 029
& = 7T (R {0—|— yPYTE [@ P\ 6.7)
1 (R)? 9*0)
XF{HF78<R>6V}’
dinN 1 (R)? 920 1) d
i =T o amov | ar e o

Here c is the actual concentration of segregating particles in the ambient phase, D their diffu-
sion coefficient, kp the Boltzmann constant, and 7" the absolute temperature. The quantity I"
reflects specific properties of the system under consideration. In general, the relation I' < 1
holds and the absolute value of this quantity increases with increasing average cluster size. In
this limit of large |T'| (and in the absence of stresses), the asymptotic solutions obtained by
Lifshitz and Slezov are included in this theoretical approach as a limiting case.

The above theory allows one to describe the whole coarsening process including its initial
stages. It allows one to describe in a relatively simple and straightforward way the effect of
elastic stresses on coarsening. From the above equations, the following consequences can be
drawn:

« If (©) = 0 (absence of elastic stresses) or in the case that the energy of elastic defor-
mations increases linearly with the volume of the cluster o) = eV, elastic strains do
not modify the coarsening process qualitatively. The Lifshitz—Slezov results are obtained
asymptotically as special cases.
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Figure 6.2: Comparison of experimental data (dots for the average cluster size and open circles of
numbers of clusters in the system [200]) and theoretical predictions for the process of Ostwald ripening
of AgCl clusters in a sodium borate melt (for the details see [233]).
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208 6 Coarsening Under the Influence of Elastic Stresses and in Porous Materials

« If elastic stresses result in energies of elastic deformations growing more rapidly than
linear with the volume of the clusters, then elastic strains will lead to an inhibition of
coarsening.

An example in this respect is shown in Figure 6.2, giving an interpretation of the experimental
results shown in Figure 6.1.

As already mentioned, the theory of coarsening in elastic bodies developed by Schmelzer,
Gutzow, and Pascova [220,221,223,224,226,229,232-234] has a huge advantage with respect
to simplicity and straightforward applicability. However, as a disadvantage, it allows one only
to determine the average cluster size and the number of clusters as functions of time and
does not allow one to make detailed predictions concerning the evolution of the cluster-size
distribution function in time. This problem will be addressed in the following sections (see
also [236,237,290]).

6.3 Ostwald Ripening in a System of Nondeformable Pores
of Equal Size R,

6.3.1 Mathematical Formulation of the Problem and General Solution

Analyzing coarsening in porous materials, first the process of competitive growth of an en-
semble of clusters in a system of pores of equal size Ry is considered. The matrix is supposed
to be absolutely rigid, i.e., the growth of the clusters is terminated immediately once the clus-
ter size R becomes equal to Ry. It is assumed that for a radius R of a cluster less than R
the growth equation has the usual form for diffusion-limited growth, and that the growth is
stopped immediately for R = Rj. Consequently, the growth equation can be written as

drR R, [ 1 1
k< U (e — 6.
1, for Ry— R >0,
ORo — R) = { 0, for Ry— R <0, (6.10)
20 20Dc
()= — = g 6.11
Be(t) caAu(t) 2kpTRS, ©.1D)

In Eq. (6.9) a dimensionless time scale is used (see, e.g., [236]); R is the critical cluster size
at the beginning of the process of competitive growth and R, is the actual time-dependent
critical cluster size, o is the specific surface energy, c,, the volume density of particles of the
segregating phase, while ¢’ denotes the equilibrium density of the segregating component in
the matrix. D is the diffusion coefficient in the matrix phase, kp the Boltzmann constant,
T the absolute temperature, t,. the real time in seconds, and Ay the change of the chemical
potential in the precipitation process.

As a second assumption we demand that R is sufficiently large to allow one the establish-
ment of a time-independent distribution with respect to cluster sizes in reduced coordinates
before the interactions with the pore walls start to play a dominating role. This assumption
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6.3 Ostwald Ripening in a System of Nondeformable Pores of Equal Size Ry 209

guaranties that nucleation processes do not occur any more. Moreover, it supplies a univer-
sal initial distribution independent of the prehistory of the process of formation of the cluster
ensemble as a starting point for the following considerations.

In the present analysis, we use the original distribution function with respect to cluster
sizes in reduced variables ¢ (u, 7) as introduced in Section 4.1 and proposed first in [153-155]

¢ (u,7) = N(1)P(u), (6.12)
where
o Relt) R
7=3In Ru U= 7Rc(t)’ (6.13)

3 /HE)
25/3 (u + 3)"/? (g - u)

and o (u, 7) du is the number of clusters per unit volume of the matrix in the interval u, v+ du
at the reduced time 7. The proposed method is, however, not restricted to any special form of
the initial distribution function chosen as a starting point.

The function P(u) is depicted in Figure 4.2. It has a relatively sharp maximum and tends
to zero for u = (3/2). Moreover, the average cluster size (R(t)) coincides with the critical
cluster radius R.(t) thus corresponding to u = 1. As a consequence, once such a distribution
is formed, the interactions with the walls start to influence the coarsening process when the
critical cluster size has reached the value R, = (2/3)Ry. At this moment of time, which we
denote as t, the size distribution function f (R, t) can be written as

e =8P (730 i (6.15)

with
2
R.(to) = gRo- (6.16)

In Eq. (6.15), N(¢o) is the number of clusters per unit volume of the matrix at the moment
t = to and f(R,t) the distribution function with respect to cluster sizes in coordinates R and
t. It is connected with ¢ (u, 7) by

o(u,7) = f(R,t)R.(t). 6.17)

Since nucleation processes do not occur in this late stage of the transformation, the further
evolution of the size distribution function f(R,t) is governed by the continuity equation

of(R,t) O dR\
Y, 2 (f(R,t)E> 0. (6.18)
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210 6 Coarsening Under the Influence of Elastic Stresses and in Porous Materials

In the interval R < Ry the solution of Eq. (6.18) with the initial condition (6.15) can be
expressed as

 N(to) , (Ri(R.1)\ OR,
10 = i (R) 5 ©19

where R (R, 1) is the characteristics of the growth equation

drR R (1 1
e ) 6.20
dt R <RC R) (6:20)
Indeed, the solution of the continuity equation (6.18) for any arbitrary initial distribution
f(R,t1) can be found in the following way. Let R = R(R;,t) be a solution of the growth

equation (6.20) containing some integration constant R;. This equation can be transformed
into the so-called characteristics

Ry = Ry(R,t) (6.21)
of the partial differential equation (6.18). The solution of Eq. (6.18) is then given by

OR
F(R) = f(Ry(R, 1), t1) S (6:22)
OR
The right-hand side of Eq. (6.22) is obtained by substitution of R; for R into the initial distri-
bution f(R,t1) and multiplying with (OR;/0R).
In order to prove that Eq. (6.22) is the solution of Eq. (6.18) let us calculate derivatives of
Eq. (6.22),

of ([ 0f ORi\ Ry Ry

ot <8R1 ot > or TRt G aR 6.23)

o .. 0 OR,

—R(fR) =R (f(Rl, t)—— R R> (6.24)
([ Of OR1\ ORy 0’ Ry OR, OR
_<8—Rlﬁ> 8RR f(Ru, )aRQ R+ f(Ry, )8R R

Since R is, on the other hand, some constant of integration, Ry = R; (R, t) determines R as a
function of ¢. Therefore, we have

dR, _9RidR  OR,

dt  OR At | at (6.25)
A second derivation with respect to ¢ and R yields
o (OR\]dR OR,d*R 0°R,
ot \ OR = 2
{Gt < R )} i TR az o 0 (6.26)
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2 2
ORidR | OR 0 (dR> O _ (6.27)
OR? dt OR OR \ dt ORIt
Substituting Egs. (6.23) and (6.24) into the continuity equation (6.24), taking into account the
additional relationships (6.26) and (6.27), proves that Eq. (6.22) is, indeed, the solution of
Eq. (6.18).

The validity of Eq. (6.22) may be also verified in an alternative way. Let f(R1,t1) dR; be
the number of clusters in the interval R;, Ry + dR; at the moment of time ¢;. The growth of
the clusters for ¢ > ¢, is determined by Eq. (6.21). Replacing thus R; according to Eq. (6.21)
by R, we obtain at any arbitrary moment of time

ORy

t),t1) =

f(Rl(R3 )7 1) aR
and, consequently, immediately Eq. (6.22).

Substituting Eq. (6.9) into Eq. (6.18) further yields

F(R.1) = (/ F(Bo— 1) ST

For the determination of the evolution of the size distribution function f(R,t) in the time
interval t > t; the time dependence of the critical cluster radius has to be estimated. It
is determined by the mass-balance equation, which can be transformed into the following
expression:

dR,

§(Ry — R) dt) ., R>Ry. (629

R0—€ e—0

1 1 4 cq 1

Ro
3
Ro(t)  Ru(ty) 3 co—¢ Rug /O R°[f(R.to) - f(R,1)] AR

¢ d
— / R3f(Ry — ¢,t) dr dt’ ) (6.29)
tO dt RQ—E e—0

Here c,, is the volume concentration of the segregating particles in the newly evolving phase,
and cq and ¢’ are the initial and equilibrium concentrations of the segregating particles in the
matrix, respectively.

The set of Egs. (6.19)—(6.29) with the initial condition (6.15) has to be solved, now, in
a self-consistent way. As a result one obtains a unique description of the evolution of the
size distribution function f(R,t) for any (arbitrary) initial distribution and, moreover, for any
form of the growth equation, provided the characteristics Ry (R, t) of the growth equation can
be found. In general, the function f(R,t) can only be determined by numerical methods.
However, qualitative results can be determined analytically based on certain approximations
which are discussed in the next section.

6.3.2 Approximations and Numerical Results

To obtain the characteristics of the growth equation (6.20), we linearize this equation in the
vicinity of R = R.. This procedure yields
dR R}
dt  R3

(R—R.), R<Ry. (6.30)
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212 6 Coarsening Under the Influence of Elastic Stresses and in Porous Materials

A comparison of the original growth equation (6.20) with its linearized version (6.30) is shown
in Figure 6.3. Deviations are significant only for small values of the cluster radius R. Since
most clusters have a size not differing considerably from R, the deviations of the growth
rate for small cluster sizes do not play a significant role with respect to the evolution of the
distribution function. Moreover, in particular for small values of R, it is problematic to obtain
with Eq. (6.20) an accurate description of the decay of the clusters, because this equation was
based on the steady-state solution of the diffusion equation [289]. The deviations between
an improved decay rate and the linear approximation (6.30) are smaller than indicated in
Figure 6.3.

Rc/ RcO R/ RcO

Figure 6.3: Comparison of the original growth equation (6.20) (curve a) with the linearized ver-
sion (6.30) in the vicinity of R/R. (curve b).

The characteristics of Eq. (6.30) can be expressed in the following form:

Ri(R,t) = [R — R.(t)] exp (Rio /t dtl) + Re(to)

1, R2(t)

t dR t’ dt”
= —R? dt’, 6.31
@ O\ T ), Ra@) ©3D

or

. [t ot . [t at voa
= —R3 3 - —R3 ) 6.32
f RexP( Feo / R£’<t’)> | R2(r) P | Mo / R() (©32)

For the considered time interval ¢t > ¢, the critical cluster radius is expected to have values in
the interval (2/3)Ry < R.(t) < Ry. Moreover, the inhibition of cluster growth also results
in a pronounced inhibition of the rate of growth of the critical cluster size, which is small
compared with R, already in the absence of inhibition effects.
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Further taking into account the inequality R, < R2, we obtain as a first approximation
for Rl (R, t)

Ri(R0) = Relto) + 7= Re(0]exp (S [ 750). (6.33)

R3(t)
With Eq. (6.19) it follows immediately that for large times f(R,t) tends to zero for R < Ry.
The clusters existing initially in the system either decay or grow up to a size R = Ry, thus
forming a monodisperse size distribution.

The results of a self-consistent solution of the set of Egs. (6.19), (6.28), (6.29), and (6.31)
or (6.32) are shown in Figure 6.4. As can be seen, the abrupt total inhibition of the growth
rate for R = R results in the formation of an additional peak in the distribution at Ry and,
consequently, as an intermediate stage, in the formation of a bimodal size distribution. In
the course of time the lower peak is shifted to larger R values until both cluster populations
unite and a monodisperse distribution is established. Figures 6.5 show the evolution in time
of some quantities derived from f(R,t) like the critical cluster size, the average cluster size,
the fraction of matter in the peak, and the number of clusters in the system.

As to be expected and is evident from Figure 6.4, starting with some moment of time o the
distribution function can be approximated in the interval Ry < R < R by a linear function

f(R,t) =a()[R— Ra(t)],  t>ta (6.34)

Substituting into the continuity equation and application of Eq. (6.30) results in the following
differential equations for o and Rz (t):

do R,

— 4+ 2a(t =0, 6.35
3 T a(t) I (6.35)
dRy, R, R,
_p — _ 0 6.36
it R R (6.36)
The solutions of these equations are given by
! RSO /
a(t) = a(tz) exp (Q/t2 ) dt) , (6.37)

X

_ ¢ RSO !
Ry (t) = exp (/t2 (1) dt )
0 dt’) dt”] . (6.38)

C Ry e
RE“Q)‘/Q (1) P ‘/t2 R (1)

Since R.(t') may vary only slightly in the considered stage of the process, we set it equal to
some average R! and obtain, approximately, the following solutions:

3

Ry(t) = [Ra(t2) — Re]exp (f;fo (t— m)) + Ry, (6.39)
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Figure 6.4: Evolution of the cluster-size distribution f (R, t) shown for different moments of time in the
time interval when interactions with the pore walls become dominating. The initial distribution is given
by Egs. (6.12) and (6.15). Q is defined as Q = (co — ¢')c.
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Figure 6.5: Time evolution of some relevant quantities, characterizing the process of coarsening in
porous materials: (a) critical cluster size R.; (b) average cluster size (R); (c) number of clusters per unit
volume N; (d) fraction of matter in the peak at R = Ro.

R
a(t) = a(tz) exp (2R’3 (t— t2)> . (6.40)

In this approximation, the limiting value of the critical cluster size for ¢ — oo is obtained from
Eq. (6.29) as

5 !
1 1 Jr47r ca a(t)R§ (1§R0 Rc). (6.41)

I - el
tirgo Rc(t) Rc(tg) 15¢co—c Ry 2 Ry

Since the average size of the critical cluster R/, is greater than 2R/3, some constant value
greater than R.(t2) and less than Ry is reached asymptotically.

Summarizing the theoretical description of coarsening, or Ostwald ripening, in a system
of pores, outlined in the last two sections of the present chapter, note once more that it is not
restricted to a particular form of the growth equation. Consequently, it can also be applied to
the situation when the inhibiting terms grow continuously over a certain interval of R values.
A special case of such a type of behavior has been analyzed already in the papers [221,232,
233,236] with particular attention directed to the evolution of the cluster-size distribution in
Ostwald ripening [236]. The method applied consists in a modification of the Lifshitz—S1ezov
theory. However, to some extent the limits of applicability of the method applied in [236] were
not finally established. Thus, a verification of the results obtained in [236] with the theoretical
approach developed here is desirable. As a further step, the extension of the theory to a system
of pores with given size distribution is of interest and will be discussed in Section 6.5.

Not taken into account so far are modifications of the growth equations resulting from
the inhomogeneity of the matrix and accompanying disturbances of the diffusion fields of the
segregating particles. Such peculiarities will possibly give some quantitative modifications. It
is believed, however, that they do not change qualitatively the results outlined here.
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216 6 Coarsening Under the Influence of Elastic Stresses and in Porous Materials

6.4 Coarsening in a System of Weak Pores

For a derivation of the equations governing the evolution of an ensemble of precipitate clusters
in a system of pores with an arbitrary distribution with respect to pore sizes in a solid matrix as
a first precondition two basic equations are required, the growth equation for a single cluster
with a radius R in a pore of size Ry and the distribution function with respect to pore sizes.
The velocity of growth of a single cluster in a pore of size Ry was assumed in Section 6.3 to
be of the form

drR R, [ 1 1

& - R <Rc — R) O(Ry — R), (6.42)
1 for Rp—R>0

O(Fo — R) = { 0 for Ry— R<O0. (6.43)

This equation implies that the growth of the cluster is terminated at a radius Ry due to the
interactions with the walls of the pore.

In the opposite situation, the elastic strains, starting with some initial value of the precip-
itate size Ry, begin to inhibit its further growth. We now discuss this situation assuming that
the inhibiting effect increases only slowly with an increasing size of the cluster. In fact, in this
case Eq. (6.42) has to be modified.

In general, the elastic strains inhibiting the growth are functions of the actual cluster radius
R and the initial pore size [?y. We will assume that stress inhibiting effect on cluster growth
may be described by a term ®(R, Ry) as

drR Ry (1 1
dt R

By introducing the reduced variables (see Chapter 4 and [289])

we B0 {Rc(t)] : (6.45)

Rc(t), = RCO ’ RcO

Eq. (6.44) is transformed to

du? u?z2®(R, Ry)
- _ S e S P2 P Y 4
I ~(7T) {u Roo } u (6.46)
with
22dz)
= ) 6.47
v = {3} (647
The asymptotic stage of Ostwald ripening is reached if the conditions
F(u) = gF(u) =0 (6.48)
- Ou - '
2 2(1)
F(u) =~(7) {ulum R(R7RO)}UB (6.49)
c0

www.iran—m L\V‘dLLC(l m

Age Crwdivs 9 Olgils @ yo



6.4 Coarsening in a System of Weak Pores 217

are fulfilled. It means that the function F'(u) is tangent to the u-axis at some point = wu» and
has a point of intersection with this axis at u = —uy (see Chapter 4 and [153—-155]).
Equations (6.48) and (6.49) yield

3 22ud (ud,
b 2 2R { P } ’ (6.50)

{3 22uld [u@u 1} }3
L2 2R.o P
T {1 22u’D {qu)u +1]} ’
2 2R P

In these equations the notation ®,, = (9®/Ju) is used. By solving both the equations the
quantities v and the particular value of v (v = wug) may be obtained. In the limiting case
® = 0 the well-known asymptotic values of the Lifshitz—Slezov theory (see Chapter 4)
3 27
2 07
result, again.

In the general case & # 0 these quantities are, of course, modified by ¢ and ®,,, which
account for the influence of the pores on the evolution of the cluster ensemble. Provided, as

assumed, ¢ and ®,, are smoothly increasing functions of the cluster size, we get in the next
approximation, instead of Egs. (6.50) and (6.51), the following expressions:

(6.51)

(6.52)

u =

3 9:20 [3D,
YT 9T SR [2@ - ] (6:53)
{§ 9270 [3%] }5
2 SRy |20 654

TTTT 020 3, TV
2  8Rey | 20
Equations (6.53) and (6.54) are obtained by substituting u on the right-hand side of Egs. (6.50)

and (6.51) with its value obtained in first-order approximation (v = 3/2). Similarly, the terms
® and ®,, have to be understood as

®(R,Ry) = P(uR., Ry) =D <37RC,RO> , (6.55)

(6.56)

@u(R7RO):RC{3‘I’(“W}
u_3

O(uR.)

Since @ is an increasing function of u (the inhibiting effect of the pores increases with an
increasing size of the clusters of the evolving phase), Eq. (6.54) may be rewritten in the form
(the second term in the numerator of Eq. (6.54) can be neglected)

dz 4 922d [3P
2= 11— L1y, 6.57
S 27{ 1R. [2@ + 6.57)

Hereby in addition, the definition of (7), as given by Eq. (6.47), was used.
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218 6 Coarsening Under the Influence of Elastic Stresses and in Porous Materials

Equation (6.57) represents a differential equation for the determination of the time evolu-
tion of the critical cluster radius R.. Once, having solved Eq. (6.57), the time evolution of
the critical cluster radius and, therefore, v(7), are known, then the solutions u; and us of the

equation F'(u) = 0 can be also determined.

As it was shown already in [236] in the analysis of a special case these solutions u; and
ug determine the shape of the cluster-size distribution function ¢(u, 7) in reduced variables
(compare Chapter 4 and Egs. (6.45)). We have (see for the additional details [236])

p(u,7) = N(1)P(u),

3C

3uexp {— o ] ug’cz u?cl

Pu) = (ug — u)ug
(u2 _ u)302+2 (u + U1)302+1
with

u3 ug(2uy + u2) u?

i = R s .
U + Us (Ul + UZ) (ul =+ u2)

In the limiting case ® = 0 the already known distribution P (u)

eexpd -5
Pl -z}
25/3(u+3)3(3/2 —u)"/?

(6.58)

(6.59)

(6.60)

(6.61)

P(u)

_ =
S =
T T

S — N W bk LN 9 0 O

Figure 6.6: Cluster-size distribution functions P (u) for different values of the parameter « correspond-
ing to different moments of time. The numbers refer to the following reduced times: (a) small times, (b)
t' =6.6 x 10°, (c) t' = 9.8 x 10°, (d) ¥’ = 1.47 x 10%, (e) t' = 2.2 x 10° (for the details see [236]).
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6.5 Coarsening in a System of Nondeformable Pores with a Given Pore-Size Distribution 219

is obtained as a special case (cf. Egs. (6.12) and (4.50)). However, in general, the parameters
uy and wuo are slowly varying functions of time. Consequently, also the distribution function
in reduced variables P(u) slowly changes with time.

The outlined method can be applied for any model of cluster growth provided the elastic
strains are sufficiently moderately increasing functions of cluster size. For a particular model
of cluster growth, developed in [233], the resulting curves for the evolution of the cluster-size
distribution function and related quantities are given in Figure 6.6 [236].

6.5 Coarsening in a System of Nondeformable Pores with a
Given Pore-Size Distribution

6.5.1 A First Approximation

Whether an arbitrarily chosen cluster with an actual radius R will grow or not depends on the
size of the pore it is contained in or more generally on the pore-size distribution, which we
denote by W (Ry, (Ry)). The parameter (R) has the meaning of the average pore size.

In order to apply the results obtained for ensembles of pores of equal size to the description
of, at least, some average characteristics of Ostwald ripening in systems of pores of a given
distribution an effective average growth rate may be introduced. This effective growth velocity
of a cluster of size R may be obtained by averaging the growth rate with the normalized to
unity distribution function W (Ry, (Ry)), i.e.,

dR\ T dR
<E> - / dR, {W(RO’<RO>)E} 6.62)
0
resulting with Eq. (6.42) in
drR\ R% /1 1\ [
<E> - B (R— _ E) [ ko 0 (o, (Re))OR -~ ). (6.63)
0

As mentioned, the normalization condition

/ W (Ro, (Ro)) dRo — 1 (6.64)
0

has to be fulfilled. It follows from Eq. (6.63) that the effective growth rate (dR/dt) is a
function of the quantities R, R, and (Ry), only.

Examples for pore-size distributions which may be of relevance for different applications
are the Gaussian distribution

exp [—a((Ro) — Ro)?]

oo

Ofexp[—a(<RO> — Ro)?]

W(R()» <R0>) =

(6.65)
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220 6 Coarsening Under the Influence of Elastic Stresses and in Porous Materials

and a distribution given by

n—1
W (R, (o)) = "L . (6.66
(Ro) <1 + O)
(Ro)
Here, n is some positive number.
The average growth rates are then obtained in the form

dR\ _ (dR) [ 1+ef[¢a((Ro) — R) 667)
at / — \dt 1 + erf(Y/a(Ro)) '

for the case given by Eq. (6.65), and

dR dt
—_— )= 6.68
<dt> (1 R)"_l (69
+ _
(Ro)
for the distribution described by Eq. (6.66).
The evolution of the cluster-size distribution function f(R,t) and related quantities are

governed in this approximation by a continuity equation in cluster-size space of the form (cf.
Section 6.3)

f(R1) ar\\
011 +ﬁ<f(R,t)<E>)—O. (6.69)

The solution of the problem can be formulated, consequently, in the same way as done in
Section 6.3 for the case of monodisperse pore-size distributions where Ry has to be replaced,
now, by (Ryp).

Let f(R,t1) be the cluster-size distribution at some given moment of time ¢; and

Ry = Ri(R,1) (6.70)

the characteristics of the growth equation (6.63) (for example, Eq. (6.67) or (6.68)) obeying
the condition R; (R,t1) = R. The cluster-size distribution function in the interval R < (Rjy)
at any moment of time is then given by

OR1(R, 1)
OR

Thus, for a determination of the time evolution of the cluster-size distribution function, similar
to those obtained in Sections 6.3 and in [290], only the characteristics of the equation has to
be determined.

Suppose, initially a Lifshitz—Slezov distribution is established and the effective growth rate
may be expressed in the form as given by Eq. (6.44) with a moderately increasing inhibiting
term ® then also the method developed in Section 6.3 may be used for a first estimation of the
time evolution of some characteristic quantities like the number of clusters, the average, and

F(R,t) = f(Ri(R,t), 1) : 6.71)
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6.5 Coarsening in a System of Nondeformable Pores with a Given Pore-Size Distribution 221

the critical cluster sizes. However, the transition to an average growth rate performed with
Eq. (6.62) implies that the details of the evolution of the cluster-size distribution in the system
of pores cannot be described adequately by either of both mentioned analytical approaches.
Consequently, for a detailed determination of the evolution of the cluster-size distribution in
a system of pores of given distribution another method has to be developed which will be
discussed in the following subsection.

1.5
ore distribution
P 03} t=16
1.0F r
02F
0.5F 01k
0 L 1 1 1 1 0 L 1 1 1
t=0 - t=24
20F 02F
1.0F 0.1F
0 1 1 1 1 1 0 1 1 J 1 1
041 =8 i t=40
03k 0.20F
0.2F
0.10
0.1F L
0 1 1 1 L 0 1 1 1 1 1
0 05 1.0 15 20 25 3.0 0 05 1.0 15 20 25 3.0

Figure 6.7: Different stages in the time evolution of the cluster-size distribution evolving in a Gaussian-
type pore-size distribution (shown first at the top of the figure).

6.5.2 General Approach: Description of the Method

We assume that an ensemble of clusters grows in a system of pores with a size distribution
characterized by the normalized to unity distribution function W (Ry). Each pore contains by
assumption not more than one cluster, since processes of coarsening inside one pore may be
expected to proceed with a much higher rate as compared with the process in the system as a
whole.

We further demand that the pores are sufficiently large to allow initially the establishment
of a time-independent distribution with respect to cluster sizes in reduced coordinates, as given
by the original Lifshitz—Slezov distribution P(u) (Eq. (6.61)). This assumption supplies us
with a universal initial distribution independent of the pecularities of nucleation and growth in
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22 1.0
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Figure 6.8: Time evolution of the average cluster radius (R), the critical cluster radius R, the number
of clusters N (¢) in the system, and the amount of the new phase immobilized in the pores as functions
of time for the process shown in Figure 6.7 as obtained from the numerical calculations.

the initial stages of the phase transformation. It means, moreover, that cluster- and pore-size
distributions at the beginning of the coarsening process are statistically independent. Note that
the described method is applicable, in principle, also for any other initial distribution.

Since we assume that initially an evolution of the cluster-size distribution is not influenced
by the interactions with the walls the distribution of clusters and the pore-size distributions are
initially well separated in cluster-size space, i.e., the largest cluster in the distribution is less
in size than the smallest pore.

Let N be the number of clusters in a unit volume of the porous solid and dV their share
with cluster sizes in the interval R, R + dR and in pores of radii Ry, Ry + dRy, then a
distribution function w(R, Ry, t) may be introduced, defined by

dN = w(R, Ry, t) dRdRy. (6.72)

In order to find the cluster-size distribution f(R,t) this equation has to be integrated over all
possible pore sizes, i.e.,

f(R,t) = / w(R, Ry, t) dRy. (6.73)
0

Because of the assumed statistical independence of pore and cluster radii the distribution func-
tion w(R, Ry, ) in the initial stage can also be written in the form

w(R, Ro,t) = f(R, )W (Ry). (6.74)
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6.5 Coarsening in a System of Nondeformable Pores with a Given Pore-Size Distribution 223

The details of the numerical procedure allowing one the determination of the time evolution
of the cluster-size distribution are given elsewhere [184]. Here we want to note only that in
the numerical calculations no use was made of the continuity equation, which was crucial for
guarantying the stability of the numerical procedure.

6.5.3 Results

The results of the numerical determination of the time evolution of the cluster-size distribution
function in a given distribution with respect to pore sizes are illustrated in Figures 6.7-6.9.
Starting always with an initial distribution (corresponding to the Lifshitz—Slezov distribution)
as depicted in Figure 6.7 (for £ = 0) and assuming a Gaussian type pore-size distribution a
number of different stages in the time evolution of the size distribution is depicted (Figure 6.7).
Moreover, also the time dependence of some related quantities is shown like for the average
cluster radius, the critical cluster radius, the number of clusters in the system and the ratio
of the evolving phase immobilized in the pores (Figure 6.8). As expected the cluster-size
distribution in the final state reproduces partly the pore-size distribution. The degree of filling
hereby depends mainly on the initial density of segregating particles (see Figure 6.9).

1.0
075 Normalized
pore
0.5 distribution
025
0 1 1 1
1.0F 0.20F
t=2 t=20
0.75 0.15F
0.5F 0.10
0.25F 0.05F
0 1 1 1 L L 0 1 1
0.8F =40
t=4 0.15+
0.6
0.10
0.4F
02k 0.05F
0 1 1 L L 0 1 1 1 I
0 05 10 15 20 25 3.0 0 05 1.0 15 20 25 3.0

Figure 6.9: Different stages in the evolution of the cluster-size distribution for a different pore-size
distribution. As expected, in the final stage the cluster-size distribution models the pore-size distribution
(compare also Figure 6.7).
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224 6 Coarsening Under the Influence of Elastic Stresses and in Porous Materials

6.6 Influence of Stochastic Effects on Coarsening in Porous
Materials

In the preceding discussion the coarsening, or Ostwald ripening process, was analyzed on
the basics of deterministic growth equations like Eq. (6.42) or (6.44). By the application of
such equations the influence of stochastic effects (like thermal noise) on coarsening cannot be
described, in principle.

In [161] it was shown, however, that the incorporation of stochastic effects into the de-
scription of Ostwald ripening in homogeneous media results in a broadening of the cluster-size
distribution function, at least, for intermediate time scales, and can be considered, thus, as one
of the factors which may account for the gap between the theoretical and experimental results
concerning the shape of the cluster-size distribution function in Ostwald ripening [107, 171].
Consequently, the same effect is also expected to occur for Ostwald ripening in porous media.

As outlined in detail in [161,293] stochastic effects can be accounted for in the description
of coarsening by the numerical solution of the set of basic equations underlying classical
nucleation theory, i.e.,

NG _ 15— 1,0~ J (5.0, 6.75)
ot
J(j,t) =w DG ONG ) —w (G + 1L, NG + 1,¢). (6.76)

Here N(j,t) is the number of clusters in the considered volume consisting at time ¢ of j
monomers. The coefficients of attachment w(*) and of detachment w(~) reflect the particular
mechanism of growth or decay of the clusters.

By a Taylor expansion of the terms w(*)(j — 1)N(j — 1) and w7 (j + 1)N(j + 1) a
Fokker—Planck equation of the form

ON(j,t) 9. D[ D
ot = " POONGOI+ 5 {D(M)ajN(Jaf)] + ©.77)
is obtained with
v(Gt) = wH (G 8) —w (G +1,8), ©6.78)
(4 () (4
Dy = L) WG+ (6.79)

2

It is seen that while the first term in Eq. (6.77) describes the deterministic flow with the average
growth rate v, the second term accounts for stochastic effects on motion in cluster-size space.

In Figures 6.10 results are shown for the time evolution of a cluster ensemble in a system
of nondeformable pores of equal size (j = 5000) based on the numerical solution of the set of
kinetic equations (6.75) and (6.76) with appropriate initial and boundary conditions [161,171].
The distribution curves in Figure 6.10(a) are normalized in such a way that the maximum of
all shown curves equals N = 1. Qualitatively the results remain the same as discussed so far.
However, some broadening of the distribution occurs, again. For the particular case considered
this effect is seen most clearly in Figure 6.10(b). Not a delta-function-like distribution is
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Figure 6.10: (a) Cluster-size distribution function for Ostwald ripening in a porous material containing
pores of equal size with radii allowing one to introduce a maximum number of particles jmax = 5000
for different moments of time ((1) ¢ = 992; (2) ¢t = 1493; (3)t = 1993; (4) t = 2493; (5) t = 2994). At
t = 0 the evolution was started with a monodisperse distribution consisting of monomers, only. (b) Part
of the cluster-size distribution for cluster sizes near jmax and relatively late stages of the coarsening
process (t = 11306, ¢t = 11794, and ¢ = 12282). As can be seen from the figure, practically the curves
coincide. The deviation from a d-function-like distribution is due to stochastic effects (thermal noise).
In both cases (a) and (b), the results were normalized in such a way that the maximum height of all
considered curves equals one. The following values are assigned to the parameters employed in the cal-
culations: ¢ = 0.29%10* m™?; D = 0.17x10" " m’s™ ;0 = 0.08 Nm ™% ¢’ = 0.86 x 10°°m™?;
ca(t=10)=0.86 x 10 m™3;, T = 730 K.

established finally, but a stationary distribution with a sharp maximum for clusters having the
size of the pores and decreasing rapidly with a decreasing number of particles in the clusters.

Analytically, this stationary distribution for ¢ — oo can be obtained from Egs. (6.75) and
(6.76) as

w) (n
N(n—1) = Wn(—)l)]v(n)’ N = jmax, (6.80)
N(n— k) = 200 1) - wOn— (k= 1) 6.81)

wH (n—DwH(n—2)- - wH(n—k)

6.7 Discussion

In the present chapter both analytical and numerical methods have been developed allowing
one to investigate the kinetics of Ostwald ripening in an ensemble of pores for different pore-
size distributions and types of response of the walls of the pores with respect to cluster growth.
The notation of pore is used with a generalized meaning either as a real object in materials like
vycor glasses or zeolites or as a low-density region of a homogeneous matrix where clusters
may be formed and grow preferentially.
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226 6 Coarsening Under the Influence of Elastic Stresses and in Porous Materials

In the so far considered examples it was assumed that the diffusional flow of the segre-
gating particles is not influenced by the structure of the porous material. This simplifying
assumption can be replaced in a more accurate description including into the analysis an in-
vestigation of the influence of the particular structure of the matrix on the diffusional flow of
the segregating particles. Qualitatively no changes in the kinetics of coarsening as compared
with the outlined here results are expected. Moreover, in all considered cases, the growth is
finally stopped by the matrix. In terms of the phenomenological theory of rheology this latter
assumption corresponds to the assumption of a Kelvin’s like body in modeling the rheological
properties of the matrix [72]. Of interest would be, of course, also the consideration of the
alternative model, where the properties of the matrix are described by Maxwell’s model of
viscous flow.

In the last decades, an increased interest in the theoretical description of different aspects
of the kinetics of competitive growth of ensembles of clusters (Ostwald ripening), formed
as the result of nucleation and growth or spinodal decomposition in first-order phase tran-
sition, can be noticed [221,289]. These investigations include, e.g.: (i) the analysis of the
influence of a finite volume fraction of the segregating phase on the coarsening process
[12,40, 65,103,170, 197,324,340]; (ii) a comparative study of possible reasons for the some-
times experimentally observed deviation of the distribution function with respect to cluster
sizes from the form predicted by the original Lifshitz—Slezov—Wagner theory [107,161,171];
(iii) a thermodynamic analysis of this process resulting in the estimation of the initial state
where Ostwald ripening may start, and in the description of the whole course of Ostwald
ripening, including its initial nonasymptotic stage [220, 221,226, 234]; (iv) the evaluation of
the influence of modifications of the growth equations on the ripening kinetics and the form of
the distribution function with respect to cluster sizes [55,86,278,285,289]; (v) the analysis of
the influence of elastic strains on the coarsening process, due either to an elastic interaction be-
tween the clusters [7,12,39,55,108,109,122,320] or to external tension or compression [179];
(vi) the description of Ostwald ripening in adiabatically closed systems verifying, in particu-
lar, the possibility of a switching from growth limited by diffusion-like processes to growth of
the clusters limited by heat conduction [230,231]; (vii) the analysis of Ostwald ripening for
multicomponent systems [284,289] including the evolution of ensembles of pores [227,287];
(viii) the description of Ostwald ripening in the isothermal rheocasting process [345] and in
nonequilibrium phase transitions [175]. For the respective developments, the reader is re-
ferred to the references cited. In the next chapter, we will extend here the analysis of the
kinetics of coarsening for the case of a nonconserved amount of the segregating phase (see
also [163,274].
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7 Cluster Formation and Growth in Segregation Processes
at Given Input Fluxes of Monomers and Under the
Influence of Radiation

7.1 Introduction

For a number of technological applications in materials science the understanding of the kinet-
ics of phase transformation processes under varying external and/or internal conditions is of
significant importance. One example in this respect consists in the description of the process
of formation and growth of ensembles of clusters in segregation processes; if the segregating
particles are added homogeneously to the bulk of a solid or liquid solution by a constant or
changing in time rate ®,,.

In application to photography this problem was analyzed both theoretically and exper-
imentally by Leubner [148-150] for diffusion and kinetically limited growth modes of the
clusters of the new phase. Leubner argued that for diffusion-limited growth the number
of supercritical clusters, /N, formed as a result of an interplay of nucleation, growth, and
supply of additional monomers, is proportional to ®,, while for kinetically limited growth
N(R) =~ const should hold [150]. However, Leubner’s theory is exclusively based on the
consideration of a mass-balance equation interrelating the growth of the supercritical clusters
with the input fluxes of monomers of the segregating component, so that an adequate theoret-
ical description of nucleation is lacking. Moreover, a number of important parameters of the
theory do not find a self-consistent theoretical determination in Leubner’s approach.

Since the problem discussed by Leubner is of general theoretical and practical interest it
is revisited here from a more fundamental point of view. Based on the numerical solution of
a set of kinetic equations, in the present study, the process of cluster formation and growth at
a constant rate of supply of monomers of the segregating component both for diffusion and
kinetically limited growth is analyzed. Characteristic quantities like the average ((R)) and
critical (R.) cluster sizes as well as the time evolution of the cluster-size distribution functions
in absolute (R) and reduced variables (R/R,.) are discussed. Particular attention is devoted
to the answer of the questions, whether the evolution of the cluster ensemble is governed by
power laws, again, and if this is the case, which types of power laws occur, how the number
of stable clusters formed in the system as a result of segregation processes depends on the rate
of input fluxes of monomers, respectively, which quantities remain constant in the final stage
of the segregation processes.

Another topic of huge practical interest is the analysis of cluster formation, cluster growth,
and coarsening under the influence of external radiation (see also [1,2]). The respective prob-
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228 7 Segregation at Given Input Fluxes of Monomers and Radiation Effects

lems are analyzed in the final part of the present chapter. The growth of second phase pre-
cipitates from the supersaturated solid solution under irradiation is investigated taking into
account a new mechanism of precipitate dissolution. This mechanism is of a purely diffusion
origin, i.e., it is based on diffusion outfluxes of point defects produced by irradiation within
the precipitates into the host matrix, provided that the interface boundary is transparent for
the point defects. The point defect production rate within a precipitate is proportional to its
volume while the total diffusion influx of substitutional impurity atoms is proportional to its
radius meaning that there exists a maximum size at which the precipitate growth rate equals
the rate of its radiation-induced dissolution. This size is shown to be a stable one implying
that under irradiation a stationary state can be achieved far away from the thermodynamic
equilibrium.

7.2 Coarsening with Input Fluxes of Raw Material

7.2.1 Preliminary Estimates

We consider the process of formation and growth of clusters of a new phase in segregation
processes in solid or liquid solutions. In the initial stage, at ¢ = 0, the concentration of the
segregating particles c is assumed to be equal to the equilibrium solubility c(.q) for a stable
coexistence of the evolving phase with the initially existing ambient phase at a planar interface.
Starting with such an initial state, particles of the segregating phase are added with a constant
rate &, homogeneously to the system. As a result the system is transferred into a metastable
state and the spontaneous formation of supercritical clusters becomes possible.

Assuming a perfect solution the relative supersaturation with respect to cluster formation,
(Ap/kpT) can be expressed as

Ap e(t) .
=1 AT th t=0) = Cleq), 7.1
kpT (c(eq>> with et =0) = ceq b

where Ay is the difference in the chemical potentials referred to one segregating particle in
the ambient and newly evolving phases, respectively, kg is the Boltzmann constant, and 7" the
absolute temperature.

According to classical nucleation theory the probability of formation of stable aggregates
of the evolving phase increases with an increasing supersaturation. Consequently, after some
period of time an intensive process of nucleation will occur. Under stable clusters hereby such
aggregates are understood, which exceed in size the actual critical cluster radius, R, given by

20
caTin ( 2))

Cleq)

R, = (7.2)

Here c,, is the density of segregating particles in the newly evolving phase, while o denotes
the specific interfacial energy or surface tension.

www.iran—m L\V‘dLLC() m

Age Crwdivs 9 Olgils @ yo



7.2 Coarsening with Input Fluxes of Raw Material 229

The further growth of the clusters is described here by the commonly applied growth
equation

@ — QUDC(QQ) l l _ i (7.3)

dt ~ 2kgT R\R R. '
for diffusion-limited growth, while for kinetically limited growth the relation

dR 20Dc 1 /1 1

v 208Ceq t (1 1 (7.4)

dt ng k‘BT lo R Rc

is used. Here D is the diffusion coefficient of the segregating particles in the ambient phase,
R is the radius of the cluster, and /y a length parameter with a magnitude of the order of
molecular dimensions.

Processes of formation and growth of clusters of the newly evolving phase result in a
sharp reduction of the supersaturation, so that after some interval of time a steady state may
develop, where the formation of new clusters is practically excluded. In this state, the input
fluxes of monomers are utilized for the growth of the already existing clusters. Experimental
examples for the establishment of such steady states are given by Leubner in the already cited
papers [148—150]. In this stage, two limiting mechanisms for the further evolution of the
already existing ensemble of clusters can be imagined:

(i) The rate of input of monomers is small, so that the usual dissolution-growth mechanism
of Ostwald ripening [94,155] dominates. In this case the behavior of the cluster ensemble
is governed by the equations

(R)3 ~1t, N ~ ¢! (7.5)
for diffusion-limited growth and

(RY>~t,  N~t3/? (7.6)
for kinetically limited growth.

(ii) The rate of input fluxes of monomers is sufficiently high to allow an independent si-
multaneous growth of the already formed supercritical clusters. In this case, we have to
expect

(R)? ~ t, N ~ const (7.7)
for diffusion-limited growth and
(R) ~ t, N ~ const (7.8)

for kinetically limited growth.

Suppose, a steady state is established in the system, the change of the total amount of the
evolving phase has to be equal to the number of monomers added to the system in the same
time interval. This condition yields

d [4_7r< >3N}dN1

— =— =0, 7.
dt | 3va dt (79)
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230 7 Segregation at Given Input Fluxes of Monomers and Radiation Effects

Here v, is the volume of a monomer in the evolving phase and N; is the total number of
monomers. Obviously, neither of the mentioned limiting growth mechanisms fulfills the re-
striction given by Eq. (7.9). It follows that both independent growth at the expense of addi-
tionally introduced monomers and growth-dissolution effects have to be taken into account
for an understanding of the establishment of the steady state observed experimentally.

If, however, for the considered case the asymptotic behavior is also governed by power
laws of the form

(R)3 ~t*, N ~tP (7.10)
then according to Eq. (7.9) the additional condition
a+B=1 (7.11)

has to be fulfilled.

7.2.2 Basic Kinetic Equations

In accordance with the classical theory of nucleation we assume that processes of cluster
growth and decay proceed only via addition or evaporation of monomers. The clusters are
assumed to be of spherical size and are characterized by the number of monomers ¢, contained
in them, or by a radius R;. N (%,t) denotes the number of cluster consisting of : monomers.

The time evolution of the cluster-size distribution function N (i, t) is governed under these
assumptions by the following set of equations:

aNégz,t) — w(+)(i - 1L,t)N(@E—1,t) + ’w(_)(i +1,)N(i+1,1) (7.12)
[0, 0) + OG0 NG ).

For relatively large cluster sizes this equation can be transformed by a Taylor expansion into
a Fokker—Planck type equation of the form

ON(i,t) 0. . , 9% ,
—a " =5 [v(i, )N (i,t)] + o2 la(i, t)N(i,t)] . (7.13)

Hereby the notations

v(i,t) = w' ) (i, 1) — w ) (i,1) (7.14)

w ) (i, 1) + w4, )
2

a(it) = (7.15)

are used.
Equations (7.14) and (7.15) allow one to determine the rates of attachment w) and dis-
solution w(~) for different deterministic growth mechanisms. For diffusion-limited growth
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7.2 Coarsening with Input Fluxes of Raw Material 231

we have (for the limiting case of a perfect solution)

w ) (i,t) = 47 R; Deo, (7.16)

w7 (i,t) = 47 R; Dcg, , (7.17)
while for kinetically limited growth

wh (i, 1) = 47rR$DCl;°° , (7.18)
0

CRi

w7 (i,t) = 47 R?D l
0

(7.19)

holds. Hereby c is the concentration of the segregating particles far away from the growing
or dissolving clusters, cr, specifies the equilibrium concentration of segregating particles in
the vicinity of a cluster of size R;. Its value is given by (e.g., [94])

20
CR; = C(eq) €XP (m) . (7.20)

Denoting by v,, the volume of a monomeric unit we may write further
1 dm

’Ua:—_

. 3 R3. (7.21)

Taking into account this relation the radius of a cluster of size R; may be expressed as

1/3
R; = (3&) i3, (7.22)
4

For the numerical calculations we will further use a dimensionless time scale defined by

) 30, 1/3
t' =4nD — t. 7.23
"D (52 ) 029

Moreover, the parameter [y we identify in the calculations with R;.
Substitution of Egs. (7.16)—(7.23) into the basic equation (7.12) yields

aN(l t/) C . 1 . . 20 .
) L O G- DYBNG -1, 1)/3 —|N 1,¢
i = o= NG = L) i+ ) e e NG 18)
Co 20 -1/3 - 4/
— _ Nz, t 7.24
[C(eq) o (CakBTRiﬂ FENGT) 729
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for diffusion-limited growth and

ON(i,t) Coo ;. 9/3 17 . ; 20 )
Tt = T G 1)?2BNGE—1,¢) + (i +1)23 ———— | N(i+1,t
ot Clea) (i ) (i )+ (i )7 exp cakpT Rt (i ;)

Coo 20 -2/3 T
- +exp | ——— ) | ¥/3N(i,¢t 7.25
[%q) P (CakBTRz' ﬂ (6,7 (7.25)

for kinetically limited growth.

7.2.3 Results of the Numerical Solution of the Kinetic Equations

For the numerical solutions of Eqgs. (7.24) and (7.25) Euler’s Polygon method is used (cf.
[123]), i.e., the change of the number of clusters consisting of ¢ monomers is calculated by

AN (i, t)
ot

The values of the parameters o, cq, and ¢(qq) are taken from Ref. [23].

The method can be made as accurate as desired by decreasing the length of the time step
At’ [123]. For the calculations a time step At’ = 10~ has been used. As a check of the
reliability of the results obtained a second calculation has been carried out with a time step
At' = 1075, The resulting values for R, ('), etc., differ only slightly (< 3%) from the values
obtained from the calculations with the larger time steps, so that the Polygon method can be
considered as sufficiently accurate for our purposes.

In Figures 7.1(a) and (b) the time evolution of the average cluster radius (R), the criti-
cal cluster radius R, and their ratio (R)/R,. are shown both for diffusion (a) and kinetically
limited growth (b). In Figures 7.2 the change of the relative supersaturation In(c/c(cq)) is pre-
sented starting from an initial value equal to zero (by assumption c(t = 0) = c(cq) holds). As

N(i,t'+ At') = N(i,t') + At'. (7.26)

a 1
2 -
(R), nm 3
R, nm
(RR, 1 2
O0 100 200 0O 100 200
I8 r

Figure 7.1: Average cluster radius (R) (1), critical cluster radius R, (2), and their ratio (R)/R. (3)
as functions of time ¢’ (in reduced units) for (a) diffusion-limited growth and (b) for kinetically limited
growth. The input flux was chosen to be equal to &, = 10%° monomers,/(h m?) for kinetically lim-
ited growth and ®, = 10 x 107 monomers/(h m®) for diffusion-limited growth. The values of the
parameters are taken from [23].
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7.2 Coarsening with Input Fluxes of Raw Material 233

seen, initially the supersaturation grows monotonically. After some sufficiently large critical
value is reached, intensive nucleation occurs. The processes of formation and further growth
of the clusters diminish the supersaturation, again.

a

2 -
-] >
&Q ————— =~ g
L) \\\ \3
E 1t ~ | E

1 1 1 1 1
00 5 10 15 00 100 200

Figure 7.2: Time dependence of the relative supersaturation for diffusion (full curve) and kinetically
limited growth (dashed curve). Figure (a) schematically shows the initial stage of the process. Here the
dotted line describes the change in the supersaturation for a constant value of the input fluxes when no

clusters are formed in the system, while (b) gives an impression of the whole course of the process. For
the values of the parameters see the caption to Figure 7.1.

In Figures 7.3 the same processes are illustrated by considering the variation of the number
of clusters in the system in time. It is seen that for diffusion-limited growth (full curves)
a steady state is reached asymptotically characterized by a practically constant number of
clusters. According to Eqs. (7.10) and (7.11) this result implies that the average cluster radius

behaves as (R)® o ¢'. Indeed, in agreement with such expectations we obtain from the results
of the numerical calculations

a=1.01, 6 =0.00 for diffusion limited growth. (7.27)
10F
b
. _20f
EE Al 252
Z Z 10 -
\\
00 00 100 200

Figure 7.3: Number of cluster per cubic meter as a function of time ¢’ (in reduced units) for diffusion

(full curve) and kinetically limited growth (dashed curve). Figure (a) schematically shows the initial
stage while (b) illustrates the whole process.
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234 7 Segregation at Given Input Fluxes of Monomers and Radiation Effects

For kinetically limited growth (dashed curves) the rate of decrease of the cluster number
becomes slower in the asymptotic region with time; however, it does not tend to zero for this
mode of growth. Instead of Egs. (7.27) we obtain

a=1.24, 6 =-0.27 for kinetically limited growth. (7.28)

These differences are also reflected in the variations in time of the shape and the properties of
the cluster-size distribution functions F'(R/R.,t') shown in Figure 7.4.

F(R/R,)

Figure 7.4: Cluster-size distribution function F(R/R.,t') (cf. Eq. (7.29)) for diffusion (full lines)
and kinetically limited growth (dashed lines). The different curves refer to the following values of time
(in reduced units): (1) ' = 100; (2) ' = 183. For kinetically limited growth the distribution curves
coincide for both moments of time (3).

The function F(R/R,,t’) is determined in the following way:

P (Ejt/)  J(R/Re,t)Re(t))

R, N(total) (t/) ' 729
Here f(R/R.,t')R. is the number of clusters at time ¢’ in the interval [(R/R.), (R/R.) +
d(R/R.)] and Ntotar(t') the total number of clusters in the system at time t'. F(R/R.,t')
fulfills the normalization condition, i.e., it is normalized to unity (cf. [155]). The particular
function F' introduced with Eq. (7.29) tends, for coarsening in a closed system, to a univer-
sal time-independent cluster-size distribution function given by the Lifshitz—Slezov theory of
Ostwald ripening (Chapter 4 and [155]). We choose this kind of presentation of the distribu-
tion functions to allow one a direct comparison between the results obtained for the boundary
conditions considered here compared with the well-known coarsening behavior for large times
found for closed systems.

The cluster-size distribution functions in R-space (f(R,t’), respectively, F'(R/R.,t'))
are obtained from N (i,t")-dependences, determined by the numerical calculations based on
Egs. (7.24) and (7.25), via the relation
de

N(i,t') di = N(Ri.t') == dR = f(R.) dR. (7.30)
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7.2 Coarsening with Input Fluxes of Raw Material 235

In Figure 7.5, the asymptotic values of the number of clusters are shown as a function of the
input fluxes of monomeric building units ®,. As is evident, for the considered interval of
values of @, in agreement with Leubner’s results, a linear dependence N (' — o0) vs @, is
found. For kinetically limited growth such linear dependence of the number of clusters on the
value of the input fluxes ®, does not exist since IV also decreases with time in the asymptotic
region (cf. Figures 7.1 and 7.3).

151
107
z
5 -
% 50 100
q)a

Figure 7.5: Asymptotic value of the number of clusters per cubic meter for diffusion-limited growth as
a function of the input flux of monomers ®,,.

7.2.4 Discussion

As already mentioned above, processes of segregation in a system at a constant rate of sup-
ply of monomers can be divided into several distinct stages. Hereby the general scenario of
the evolution does not depend on the particular mechanism of growth of the clusters (e.g.,
kinetically or diffusion-limited growth as considered here).

In the first stage of the process the relative supersaturation increases monotonically with
time due to the supply of monomers to the system (Figure 7.2). After the initiation of nucle-
ation, which occurs with perceptible intensity after some critical value of the supersaturation
is reached, an ensemble of growing (supercritical) clusters is formed and initially the total
number of clusters in the system is increased (Figures 7.3). In the second interval of intensive
nucleation, the critical cluster radii are small and almost all supercritical clusters are grow-
ing rapidly, while at the same time new supercritical clusters are formed. As a result of both
processes the degree of supersaturation (excess of monomers) achieved initially is reduced
again (Figure 7.2). The decrease of relative supersaturation leads to an increase of the critical
cluster radius (cf. Eq. (7.2)). As a result in a third stage of the process some of the clusters
become subcritical and are dissolved, again. Hereby the total number of clusters decreases
(see Figures 7.3). Finally, the system approaches a fourth steady state, where the changes in
the relative supersaturation or the number of clusters become small and a balance between the
input fluxes and the consumption of monomers by the growing clusters is established.
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236 7 Segregation at Given Input Fluxes of Monomers and Radiation Effects

While this general scenario is same for diffusion and kinetically limited modes of growth,
nevertheless, important differences are found, in particular, in the late stage of the process. For
kinetically limited growth the rate of incorporation of the particles at the interface determines
the rate of growth of the aggregates of the newly evolving phase while for diffusion-limited
growth the transport of monomers to the interface is the rate-determining step, i.e., the rela-
tions

w7 (i) ~ i3 for diffusion-limited growth (7.31)
w7 (@)~ %% for kinetically limited growth (7.32)

hold. The differences in the kinetically growth laws result in qualitative differences in the
coarsening kinetics.
Indeed, according to Egs. (7.10), (7.11), (7.27), and (7.28) we have

(R) ~ t1/3 = const for diffusion-limited growth
(7.33)
(R) ~ t5/12 N ~ 14 for kinetically limited growth.

It turns out that the combination (R)N is, for kinetically limited growth, a slowly varying
quantity ((R)N ~ t1/6), but not a constant, as supposed by Leubner. According to Egs. (7.33)
it is not (R) N but the quantity (R)3/° N approaches a constant value for kinetically limited
growth

(R)*/°N = const for kinetically limited growth. (7.34)

On the other hand, Leubner’s suggestion concerning nearly constant values of the number of
clusters IV in the final stage of segregation for diffusion-limited growth and its linear depen-
dence on the input fluxes of monomers ®, could be proven to be correct.

Qualitative differences in the kinetics of the evolution of the systems are also clearly re-
flected in the shapes of the cluster-size distribution functions (Figure 7.4). For diffusion-
limited growth, almost all clusters are distributed in the supercritical region & > R.. The
whole ensemble of clusters in the system is stable; decay of subcritical clusters does not play
an important role and the total number of clusters approaches a constant value. However, the
maximum of the cluster-size distribution function still moves to larger values of R/R,. due to
the continuous increase of the ratio (R )/ R, (see Figure 7.1(a)).

It is seen that the shape of the distribution, the system tends to, resembles the Lifshitz—
Slezov distribution (cf. Chapter 4 and [155]). However, the peak is located not at R/ R, ~ 1
as for closed systems but at higher values R/R. = 2. In the system with kinetically limited
cluster growth the distribution function shows for large times a significantly different behav-
ior. The distribution is much broader with a maximum at R/R. ~ 1.5 and practically time
independent.

On the other hand, even for large times a nonvanishing part of the cluster ensemble keeps
subcritical. This result is connected with a continuous increase of the critical cluster radius
(Figure 7.1(b)). The subcritical clusters are dissolved and the total number of clusters de-
creases, i.e., the ripening is in progress and one cannot speak about an asymptotically ap-
proached final number of clusters in the system.
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7.3 Void Ripening in the Presence of Bulk Vacancy Sources

7.3.1 Introduction

Practice shows that the exposure of matter to neutron or charged particle irradiation results
in an increased porosity of it. This is due to intensive creation of vacancy—interstitial pairs
in collision cascades or in individual collisions. The uncompensated source of vacancies,
stimulating voidance, can act only if simultaneously (and this is really so) a corresponding
outflow of interstitial atoms exists. Indeed, because of higher diffusion of interstitials they are
rapidly incorporated into different defects or form new nuclear planes, producing, therefore,
swelling of the samples [321,323]. Without going into further details, we cite, for example,
the paper [19], where the aggregation of interstitials into flat clots in copper irradiated by «
particles was observed. Expanding the clots will constitute new nuclear planes causing the
void swelling of the samples. There exist, apparently, other possibilities of vacancies release.
In this connection it is of interest to investigate possible choices of void ensemble evolution
in the presence of bulk sources of vacancies by general analytic methods. Here we study
the problem employing the following assumptions: (a) The working interval of temperatures
ensures freezing of gas recoils, i.e., the created pores are voids. For uranium, for example,
these temperatures are about 350-500 °C [4]. (b) The fluctuation process of nucleation and
the growth of vacancy precipitates directly from supersaturated solution are terminated, and
the ripening phenomenon starts to play an essential role. In this stage the supersaturation A,
defined as A = ¢ — ¢ (coo is the concentration of the saturated solution, ¢ the equilibrium
concentration at the void surface, related to the void radius R by the usual relation
C=Cot = a= <L> Vew, (1.35)
R
where o is the interfacial surface tension, and V' the vacancy volume), tends to zero at ¢t — 0,
i.e., the voids have time to absorb all vacancies delivered by the sources. (c) The voids are
spherical and located far enough apart from each other. (d) The sources of vacancies are
described by the function ¢(t), which is assumed to be monotonic in time. At infinity such
functions are well majorized by polynomials. Therefore, not losing in generality, it is possible
to consider, that g(t) < qotnfl, where qq is the strength of sources at ¢t = 1, n is an arbitrary
number (not necessary an integer), and to draw all conclusions for a majorant. Formulating the
problem mathematically, we shall adhere to the notations of paper [274], which is the natural
continuation of [153].

7.3.2 Basic Equations

Let us first write down the full set of necessary equations describing the kinetics of coarsening
under the conditions considered:

(i) The canonical equation of motion in size space (see Eq. (4.24) in Chapter 4) is given by

at
dr

3dt

= —1) - =
Y- vt =3

—- (7.36)
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(ii)

(iii)

7 Segregation at Given Input Fluxes of Monomers and Radiation Effects

Here u = (p/z(t)) is the reduced radius (in relation to dimensionless critical radius
x(t) = Ag/A; Ay is the initial supersaturation; ¢ is a dimensionless time (t = ¢, /7,
T = R},/(aD), D is the diffusivity); Rxo = «/A is the initial critical radius, 7 is
the dimensionless canonical time (7 = Inx3). The times ¢ and 7 are related through an
unknown function v (T') = 3dt/dz®. Att — oo one has T — 0.

The continuity equation in void size space,

af o B
Fn + 8_/) (fvp) =0, (7.37)

where f(p,t) is the size-distribution function of voids, normalized per unit volume, so
that u = fooo fdp is the void number in a unit volume.

The equation of balance of matter, generalizing Eq. (4.21) from Chapter 4, is

— AO i 3
1+Q(t) = Ooz +/~”»O/f(p, t) p° dp, (7.38)
or
AO —7/3 T r 3
1+Q(t) = Q—e + ke / fo(w)u® (v,7) do. (7.39)
0
vo(T)
Here
1 t
= t) dt 7.40
Q=g [ 4t (7.40)

is the total volume of vacancies in a unit volume at time ¢, normalized to the total initial
volume of vacancies () in unit volume; fj is the initial distribution;
3
_ AT Ry,

3Qo0 '

vo(7) is a solution of the equation u[vg(7), 7] = 0, which is the lower limit of void sizes,
not dissolved to a time moment 7.

(7.41)

Equations (7.36) and (7.38) represent a full system. In these equations the unknown func-
tion is 7y (7). There are three possibilities of an asymptotical behavior of ~ (7) at 7 — oo:

v (1) — oo, (7.42)

~ (1) — const (7.43)

with the least value vy = 27/4, and

~(t) — 0. (7.44)
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Depending on the value of «y the plot of the rate of growth du?/dr as a function of u can touch
the z-axis at the point ug (at v = 9 = 27/4) or pass below this axis (7 < 7g), or to have a
zone of positive values (y > 7g) (see Figure 4.1).

The analysis made in Section 4.1.2 results in the conclusion that Egs. (7.36) and (7.38)
suppose growth of volume occupied by vacancies (at ¢ — o0) in the following cases: (i)
v — 7o: maximum growth here is Q(t) ~ t", n < 1. (ii) ¥ — const: it is the case of constant
sources, Q(t) ~ t. (iii) v — oo, Q(t) ~ t™, n > 1. Let us now consider different special
cases in detail.

7.3.3 Damped Sources

Let q(t) = got™ ! with 0 < n < 1. Itis obvious from the above said that in this case ~ should
tend to 0. Note that for strict equality v (7),_, . = 7o all points lying to the right of tangency
point up = 3/2 and moving to the left, cannot “overcome” this point and get “stick” in it. The
integral on the right-hand side of the balance equation (7.38), similar to the case n = 0, tends
to some constant, and the right-hand side itself grows in time as e”. At the same time left-
hand side of Eq. (7.38) is proportional to Q (t) ~ t" ~ e"7, since 2 = ™ = 3/(yt) in
case v = const = 7y (because v = 3dt/ dz3), and, therefore, the balance equation cannot be
satisfied. It means that - tends to 7 from below

Yo =10 [1— €2 ()], (7.45)

where 5% (7')THOC — 0 is determined from Eqgs. (7.36) and (7.38).
The introduction of €2 () is important for understanding of the process kinetics. Practi-
cally, similarly to n» = 0, in a zeroth approximation one has

Ynlrmoe =0,  n<L (7.46)
Since v = 3dt/dz3, then

z?| — ét. (7.47)

t—o0o 9

Let us find the form of the distribution function. For this purpose we shall introduce
a distribution function ¢ (u, 7) over relative sizes u = p/x, connected with f (p,t) by the
apparent relation

o (u,7)du= f(p,t) dp=2af (p,t) du. (7.48)

The continuity equation for ¢ (u, 7) everywhere, except the neighborhood of the point g, at
7 > 1 takes the form (see Eq. (4.38) in Section 4.1.3)

Op _Olpg(uw)] _
% " ou % (7.49)

where

(u—3) (u+3)
3u2 '

g(u) = (7.50)
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The solution of this equation to the left of ug can be taken as

—xrty), (7.51)
g (u)
where
r du 4 5 3 1 336
= | 7w~ 3! sin{ o - —y —In—% 7.52
v /g(u) 3n(u+3)+3n<2 u>+1—%“ SPTER (7.52)
0

and y (7 + 1) is some arbitrary function.

Let us now advert to the equation of balance. In full analogy with the case n = 0, points
cannot accumulate in the region to the right of ug, nor directly in the neighborhood of the
point ug, and the cumulative contribution of these regions to the equation of balance is negli-
gible. Therefore, the equation of balance can be used for the determination of an asymptotical
behavior of the distribution function in zeroth approximation for v < wg (distribution function
for u > wug in this approximation is equal to 0). Having substituted the solution (7.51) in the
equation of balance (7.39) and, taking into account the above said, we obtain an asymptotic
equation for y

3/2
90V ar s / u?
e"m = ke T4+ du (7.53)
3, X G)
or
3/2 ,
1= grell=m7 / X(r+Y) Y du, K= ”Qoinf’ 1>n>0. (7.54)
) g (u) 078

In case n = 0 one also has to retain in Eq. (7.39) the time-independent term. The solution
of Eq. (7.54) will be

X (7 +1) = Ape” 1m0+, (1.55)
where
3/2 5 -1
A, = |r* [ e Y gyl (7.56)
g (u)

The distribution function will take the form

1
U, T) = A,’ 6*(1*”)(T+¢) —
¢ (u,7) s )

1—n
2
3 1—-n 3u [_7:|
= Ape= -7 <§5;> 1=2u/3] (7.57)
3

(u+3) 5" (2 —u)
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7.3 Void Ripening in the Presence of Bulk Vacancy Sources 241
The number of particles per unit volume, according to normalization in Eq. (7.37), will be
equal to

3/2

A, 4, (34
p(r) = /‘P(%T) du = —— ne‘“‘"” =T (§> L (7.58)

Let P(u) du be the probability that the particle size lies between u and w + du. Then from
Egs. (7.57) and (7.58) it follows

@ (u, ) = p(r) P(u), (7.59)

where

Iisn s u < Up; (7.60)

0 U > Ug.

Figure 7.6 shows the probability P(u) as a function of v forn = 0 and n = 0.9.

6

Figure 7.6: The probability P(u) as a function of u for n = 0 and n = 0.9.

Equations (7.58)—(7.60) completely determine an asymptotical distribution of particles
over relative sizes and its time evolution. In order to obtain a distribution function over abso-
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lute sizes, we shall also calculate w.

3/2
/ 67(1771)11)—? ] du
=20 ALY N (7.61)

3/2 1
/ e—(l—n)'t[; du
0 g (u)

p

Atn — 1 we have ¢, ~ 1.5, thatis 1 < @ < 1.5. Taking into account that u = £, we find

U=cp="2u= cn%. Besides, from Eq. (7.47) it follows

—3

3\° 9 . R

t= <—> 23 = et (7.62)
2 4™ R3,

Returning to initial dimensional quantities, we have

rirn=nr(0f) %

2(1—n) =3\ 1
pt) = An_ (3 gt = An seen (B ) 4 (7.63)
1-n\2 1—nm R,

=3 4 4
R = §C3Rz0t = §C3Dat.

The probability P (cn%) is given by Eq. (7.60). The supersaturation at the time moment ¢
takes the form

2/3 1/3
A= Do _ <3) Ay (f) A, (7.64)

3 2/3 a? 1/3

Let us find the applicability limits of the obtained formulas. From the above said it is evident
that obtained asymptotic expressions are valid under the condition

where

2

72 = (Ina®)’ =9 <1n Ri) >1,  R> Ry. (7.66)
kO

The time, when the straight void ripening begins, is

1—n
t~ < MZ;)O) . (7.67)

This estimation follows from the balance relationship M R3 ~ qot™ (M is the initial number
of voids) and the formula R® ~ Dat.
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7.3 Void Ripening in the Presence of Bulk Vacancy Sources 243

7.3.4 Undamped Sources
7.3.4.1 Constant Sources

Such kind of sources leads to qualitatively different results. Formally this is connected with
the fact that the curve du?/dr (Figure 4.1, case v > 7o) to some moment of time necessarily
goes into an upper half plane. Thereof, the directions of movement of points are changed: the
points lying to the left of u; tend to zero, and all the other tend to us. The main contribution
to the equation of balance, naturally, will give the region close to us, and this determines the
asymptotic shape of the distribution function taking now a delta-like form with a maximum
at us.

Curve du?/dr as a function of u, which in the initial stage can totally lie below the
axes Ou, after inclusion of sources begins to move up to the asymptotic position with a ve-
locity defined by the strength gg (see Figure 4.1). The number of points which have had time
to cross a neighborhood of ug and, finally to disappear in the origin of coordinates, depends
both on the rate of uprise, and on an initial position of a package of points with respect to ug. It
means that a number of voids /Ny, which has no time (to a moment when the curve touches the
axes Ou) to filter out through the locking point and asymptotically seized in an area to the right
of ug, essentially depends on ¢o and fo(R). Thus, the originating d-asymptotics of the size
distribution of voids is not so universal in a sense of independence from initial conditions as
the asymptotics for damped sources which is totally independent from the initial distribution
function.

The position of the us point (the value of an averaged relative radius) together with the
height of the peak Ny completely determine the distribution function. To relate uy with g,
we use the equation of balance and equation of motion. In the balance equation (7.39), taking
into account the general tendency of points movement to us, we have

o0

/ fo (v)u? (v, 7) dv — ud / fo (v) dv = u3 Ny. (7.68)
vo () w1

T—00

Since t = Iz=¢” when v = const = 7, we can divide Eq. (7.39) by common factor e,
obtaining

%OCIO = ruj No. (7.69)
The equation of motion (7.36) gives one more relation between uy and 7o,

Yoo (u—1) —u® = 0. (7.70)

The condition for the roots of this cubic equation to be real is

w

2
VZ_ <0 (7.71)

M
\]
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(the limiting value is 9 = 27/4), and the roots themselves are
U1=2\/%COS(§+§), Uy = 2 %cos(g—g),
ug = —24 /%’" cos %. (1.72)

Here
1\3/2 -1
(p = arccos [2 (3) 73)0/2] . (7.73)
Using Eqgs.(7.69) and (7.72), we come to the equation for v,
3/2 3
= (5 e (G £

which allows us to write down the expression for us(goNo).
At large g, which means large v, we have ¢ — % In this case the roots, Eq. (7.72), can
be simplified

up =1, ug = 12 (7.75)
Together with Eq. (7.69) it allows us to write down uz in the form

_ 4
Ug = 3nNg’ (7.76)

The unknown quantity Ny = const is connected with the total swelling AV through the
following relationship:

4 .
AV = gngNo, where Ro = usRyo. (7.77)

From this we obtain

AV

Nog=——"7-—.
%7‘( (qukox)3

(7.78)

In the other limiting case (o — 0) Ny — 0, and the average size is about ~ ug.

7.3.4.2 Regimes of Growth

In this case v — oo when t — o0, and it is already completely not obvious that the point us,
itself moving with some velocity to the right, will be a point of concentration. Let us introduce
a variable z = u3. Then Eq. (7.36) takes the form

dz _ 1/3 o 1/3
i ¥ (2 1) z Yz z. (7.79)
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Let us form an expression %, using Eqs. (7.79) and (7.72) (2o = yi{ 2), and calculate a

derivative di ( EA ) s
T r4)

d z z 1/3 z z 1 dzo
#(2)-(2) -(G)-2E%) 7

Next, let us transform the term i (dﬁ) We have: 7o, = const - tV, 0 < N < 1 (the

form of v, is dictated by 7, — 00, 2 = 3 f > ,Yd—t — 00; here it is pertinently to remind
that we deal all the time with majorizing power functions). Besides, it is possible to show that
4t — _t—. From this it follows

1 dZQ 3 N
242 _ S5 N 7.81
z9 dr 21— N ( )

The parameter N is straightforwardly connected to the growth power n (see below). Thus,

d z z 1/3 Z 3 N
F5)-E) S0 T

The point of concentration z..,, has the property that

d

_<i> S0, 2< e (7.83)
dr Z9

d

<Z> <0, 2> Zeon. (7.84)
dr \ 29

It is clear from Eq. (7.82) that such point exists in all cases, which do not contradict the
equation of motion, though it does not coincide with z5. Let us determine z.,, from the

condition di (i) =0,
T z2

Zcon 1/3 Zcon 3 N
it — 14+ -———
zZ2 zZ2 21— N

3 N \ 2
Zcon = (1+21—N> —AZQ, A<1

, (7.85)

i.e., Zecon < 29.
Having clarified the existence of z.on, let us advert to the equation of balance (Eq. (7.39)).
Asymptotically, similar to Eq. (7.69), we have

Q = kx> Zcon (t) No = kxS Az Ny,

Qo/ ) d Mo = / folv : (7.86)
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Substituting here ¢ = got" !, 2o = 43/2, and v = 39L we obtain

T = apt 3" (7.87)
where
) 23 A
= — (kN . 7.88
(&%) QO (H 0) 1_ %N ( )

On summarizing, the following conclusion can be made. Since x+ — oo att — oo,
Eq. (7.87) is consistent only for n < 3/2. With such restriction on n the voids still have
time to absorb vacancies delivered by sources, supporting the supersaturation A ~ 0, and the
matter approaches a destructive threshold, possessing a definite size distribution of voids. In
the case n > 3/2 the supersaturation increases with time, and the swelling process takes an
avalanche character, which is impossible to describe without additional model assumptions.
So for the existence of §-asymptotics the fulfillment of the following inequality is needed:

3
1<n< 3 (7.89)
The formula Eq. (7.87) allows us to relate n with N. On the one hand,
3dt t2(n=1)
Y=-—=——>-, (7.90)

de? o (1 — %n)

on the other, ¥ = const - V. Hence N = 2(n — 1). For 1 < n < 3/2, as it should be,
0<N <1

Not less important are the restrictions, imposed on the source strength go. These restric-
tions are caused by the requirement that the time necessary for the formation of §-asymptotics,
should be much less than the time of disintegration. The velocity of compression of a package
of points is characterized, for example, by the quantity S—; (Az is a package width). Integrat-
ing Eq. (7.82), we obtain

& ~ const - exp (—A2/3T) . (7.91)
22

Therefore, the time of compression is 7, ~ A2/3,
The time of disintegration 74 by an order of magnitude is

T4~ B In[NoB (qo)] - (7.92)

This estimate is obtained from a limiting relationship Nyzo ~ 1. Besides, according to

Eq. (7.90) one has zo, = 4%/2 = BeP™, § = %;
2\1 %7 9(mn-1
B(q) = {ag (1 — §n>} {aoénig)] , ap = ag (qo) - (7.93)
Thus,
A3 (n) < 7" (n)In [NoB (q0)] (7.94)

which, in principle, gives the wanted restriction for qq.
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7.4 Growth and Shrinkage of Precipitates under Irradiation 247

7.3.5 Conclusions

The results of the present investigation show that the late stage coarsening behavior in segre-
gation processes in solid or liquid solutions with constant rates of input fluxes of monomeric
building units can be characterized, again, by power laws (cf. Egs. (7.33)). The respective ex-
ponents depend on the growth laws; they are different from the values obtained for coarsening
in closed systems.

With respect to practical applications the results of the present analysis indicate the possi-
bility to generate cluster distributions with definite characteristics (average size, number) by
varying the rate of input fluxes of monomers and the time interval the system is exposed to
such input fluxes (cf. Egs. (7.33) and (7.34)).

7.4 Growth and Shrinkage of Precipitates under
Irradiation

7.4.1 Introduction

Irradiation is known in some cases to result in dissolution (or shrinkage) of precipitate par-
ticles, which may grow in the process of thermal decomposition of supersaturated solid so-
lutions. This effect is usually explained to be due to collision cascades that mix atoms of
the precipitate and the matrix near the interface, taking solute atoms away from the inclu-
sion [15,41,73,192]. This dynamic mechanism of precipitate dissolution leads to the existence
of a certain maximum size of precipitates that depends on their number density. It is obvious
that for this mechanism it is not crucial whether the interface is coherent or not.

Another mechanism describing the evolution of coherent precipitates under irradiation
treats the precipitate—matrix interface as a defect sink with finite capacity [46,332]. In this
model annihilation of matrix vacancies and solute interstitials at the interface causes the radia-
tion growth of precipitates. The dissolution of precipitates takes place because the precipitate
volume rate of change is proportional to the vacancy concentration. The latter may be low at
high precipitate number density. The competition between growth and dissolution provides
the possibility of a steady state of existence of the precipitate ensemble, the precipitate dimen-
sion depending on their number density.

In the present section we consider a dissolution mechanism of purely diffusional origin
based on migration of radiation-induced point defects (PD) out-off precipitate bulk into the
matrix [2]. The PD-production rate within a precipitate is proportional to its volume while
the total diffusion flux of substitutional solute atoms is proportional to its radius implying that
there exists a maximum size at which the precipitate growth rate equals the rate of its radiation-
induced dissolution. This size is shown to be a stable one implying that under irradiation a
stationary state can be achieved far away from the thermodynamic equilibrium.
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7.4.2 Diffusion Mechanism of Radiation-Induced Shrinkage of the
Precipitates

Consider the precipitate—matrix interface which is transparent for PD. If a vacancy goes over
into the precipitate from the matrix it means that an atom of the precipitate takes the place on
its surface and the precipitate volume increases. The reverse motion of vacancies (from the
precipitate into the matrix) decreases the precipitate volume in dilute solutions since in this
case the matrix atoms are transported inside the precipitate. Under irradiation vacancies are
produced both in the matrix and in the precipitate and their fluxes influence the precipitate
growth. This effect is taken into account in the present analysis.

Note that the precipitate volume changes at a rate which is different from the rate of vari-
ation of the precipitate mass, i.e., the number of atoms in the precipitate, since the volume
is determined by the number of lattice sites within the precipitate, both occupied and free.
The volume variation rate is proportional to (j. + j5 )|z, Where j. is the volume flux den-
sity of substitutional solute atoms (in substitutional solutions under consideration) and j¢ is
the vacancy volume flux density into the matrix at the precipitate surface. The upper index e
designates parameters related to the matrix and R is the precipitate radius.

The mass variation rate is proportional to (j. + ji)|z, Where j is the flux density of
interstitial solute atoms at the surface. If the precipitate growth is free from elastic stresses,
then the mass variation rate is proportional to the volume variation rate and we may write

dR

= Geti0la. (7195)

This expression is valid when the volume deficit due to interstitial fluxes is compensated by the
vacancy fluxes which is the case when the precipitate does not contain PD sinks and, hence,
vacancy and interstitial fluxes through the surface are equal. We may express it as follows:

ji= gt = ji = j. (7.96)
The upper index ¢ designates parameters related to the precipitate.

Assume the fluxes to be positive if they are directed from the matrix into the precipitate.
Then sign of j,. is determined by the sign of the supersaturation, while the signs of j?, j¢, j¢,
and j¢ are negative since the respective fluxes are directed into the matrix. The PD recombi-
nation inside precipitates does not change the above equations since vacancies and interstitials

recombinate in equal numbers.
Let L* be the recombination length in the precipitate

i i 1/4
. Dt Dt
U:(“Z) , (7.97)

aK?

where Df) and D;f are the diffusivities of vacancies and interstitials, respectively, K ¢ is the
production rate of PD in the precipitate, and « is the recombination coefficient. Consider the
case of moderate temperatures when R < L? and the thermal PD production rate are still
negligible. In this case under stationary conditions all PD generated inside the precipitate
come out of it, so that

T
ﬂ=%=§K%- (7.98)
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Using the well-known expression j. = D%cS (¢ — cg) /R along with Eqgs. (7.96) and (7.98)
we obtain from Eq. (7.95)
drR 1 ., . ._ 1,
i ED”C” (¢ —cRr) — §K R, (7.99)
where Dy, and c;, are the vacancy diffusivity and concentration in the matrix, respectively, € is
the mean concentration of substitutional solute atoms,

20a®
e (14 2 7.100
CR=¢ (JrkBTR) (7.100)

is the equilibrium concentration at the precipitate surface, c., is the concentration at a planar
surface, o is the surface tension, 7" is the temperature, and a is the atomic spacing [155].

Equation (7.99) is different from the conventional expression due to the negative term that
is proportional to the PD generation rate. It is determined by the PD fluxes from the precipitate
into the matrix and is not related to cascade effects. It is the consequence of the transparency
of the precipitate—matrix interface to PD diffusion. In reduced variables,

R ADEcE ksT \?
=By vcv:mwgce( B ) (7.101)

R.’ R2 U\ 2co0a3

oo K? 3caooa®\’
- A3Dece \ kgT )’
Eq. (7.99) takes form

dr _ 1 (1 N l) Ak (7.102)

— = — —r”.
dt r r 27
Here A = © — ¢ is supersaturation and
2co00a>
R.= ——
AkpT

(7.103)

is the critical radius.

The dependence of the growth rate given by Eq. (7.102) on r for several values of & is
shown in Figure 7.7. In the absence of irradiation (k = 0) dR/d¢ > 0 for the R > R,
(r > 1). Under irradiation (k > 0) precipitate grows in the region R©~) < R < R(t)
(r=) < r < r)) and dissolves for R < R(™) and R > R (r < r(&), r > (1),
So, R(H) is a stable root of the equation dR/d¢ = 0 and can be named limiting size of the
precipitate. For k = 1 the growth interval reduces to the point

P = () o — 370, (7.104)

3D¢ce 3 oo 1/3
R — R — R — (ﬁ) , (7.105)
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O
\) w

e
=

Reduced growth rate, dr/dt

Reduced radius, »=R/R,

Figure 7.7: Dependence of the growth rate on reduced radius, r, for different values of k.

Here R(—) and R are determined by the equation (see Eq. (7.99))

A 20a3co,  K'R?
kTR ~ 3Dtce’

(7.106)

Let us neglect the bulk recombination of point defects as compared to losses at sinks like
voids and dislocations. If A2 is their sink strength, then our assumption means that

ALE > 1, (7.107)

where L€ is the recombination length in the matrix. In this case

K'*

i (7.108)

¢, =05 =cl +
where ¢! is the thermal equilibrium concentration of vacancies in the matrix, K* = K¢/D¢,
K¢ is the production rate of point defects in the matrix.

Neglecting the first term on the right-hand side of Eq. (7.106) we obtain the estimate

R ~ 1, /38

AV K?

(K¢ + A2DgcT). (7.109)

Note that when the radiation-induced vacancy concentration dominates over the thermal
equilibrium one, R™) is almost independent of the radiation dose and is of the order of
A'2/X ~ 10-100 atomic spacings if A ~ 1072-10~%, A ~ 10°cm~' [169] (the coher-
ence failure, as a rule, takes place when the precipitate is larger than that). It follows from
Eq. (7.109) that R™t) <« A\~1. After comparison with Eq. (7.107) we obtain that R*H) < L,
i.e., the recombination of point defects inside the precipitate is really negligible which has
been assumed above in the derivation of Eq. (7.98).
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Without irradiation precipitate can grow when its size exceeds the critical one determined
by the supersaturation. Under irradiation, for their growth it is necessary to fulfill the condition
A > A, Wwhere

A (K P (30ate (7.110)
min — D’Le]c/le) kBT b .

i.e., under irradiation the phase equilibrium is shifted to the higher supersaturation region. The
difference A — Ap,;, may be called an effective supersaturation since when it goes to zero the
growth interval reduces to a point (see Eq. (7.105)).

In the above considerations, we have assumed the supersaturation A to be the time inde-
pendent. Actually it decreases while precipitates grow, approaching the A,,;;, value where the
precipitate growth stops. At homogeneous nucleation the precipitate radius remains equal to
R™) and precipitate volume density can be determined from the conservation requirement

4%TNR* = A(0) — Anin, (7.111)
where A(0) is the initial supersaturation value. Under heterogeneous nucleation N is indepen-
dent of supersaturation and after replacing R* by R(t)(A), and A, by A this relationship
becomes the equation for defining the stationary supersaturation and the corresponding max-
imum radius R(H) (A). So, irradiation opens the possibility of existence of a §-function-like
distribution of coherent precipitates with dimensions equal to (R — R*) in the case of homo-
geneous nucleation and to §(R — R(+)(A)) in the case of heterogeneous one.

If the interface absorbs fully PD, the proposed mechanism of diffusion solution does not
work since the radiation-induced interstitial atoms and vacancies recombine at the precipitate—
matrix interface. This difference in the behavior of coherent and incoherent precipitates can be
used for the qualitative verification of the mechanism being proposed. In [346] the irradiation
effect on the kinetics of growth of precipitates depositing from the chromium-and-silicium
supersaturated solid solution based on copper was investigated experimentally. The alloy be-
ing investigated was preaged. So the coherent chromium precipitates and incoherent CrSis
precipitates were produced. Then the specimens were irradiated with 300 keV Cu™ ions. The
incoherent precipitates continued to grow under irradiation while the coherent ones were dis-
solved. By simple estimates, the authors of [346] concluded that the collision cascades cannot
cause the dissolution and preferred to explain the dissolution by the diffusion mechanism.
However, the specific mechanism of such dissolution was not considered.

7.4.3 Effect of the Precipitate Incoherence and the Solute Atom
Transition into the Interstitial Sites and Back in the Lattice Sites
The above analysis holds when the following conditions are satisfied: (a) the precipitate—
matrix interface is coherent; (b) the vacancy concentration variations in the matrix are in-
significant; (c) one can neglect the radiation knock-out of impurity atoms from the matrix

lattice sites and their transition into substitutional atoms at sinks; (d) the volume recombina-
tion of point defects is negligibly small; (e) the sink strength within precipitates is negligible.
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Let us derive the precipitate growth rate without the above assumptions except for the items
(d) and (e).

The flux densities j. and j{ from Eq. (7.95) are determined by the set of equations for
concentrations of substitution atoms ¢ and interstitial atoms ¢; in the matrix. One of them,
namely, the condition of the absence of sources of solute atoms in the matrix, div (j. + j§) =
0, can be written assuming spherical symmetry in the form

d e de;  (RY’dR
DE (c€ 2 oy pe= (= ~. 7.112
v () dr ce vdr ( r ) dr ( )
The next equation describes the solute atom diffusion in the matrix
1d 2 dCi 2 _ 1 _
2 —C)=—K®(c—c¢). 7.11
S A (c; —6) Df (c—c¢) (7.113)

The second term on the right-hand side of Eq. (7.113) describes the creation of solute inter-
stitial atoms, the term A\?¢; on the left side is the absorption of these atoms at linear sinks.
So, the solute interstitial atoms transform in the substitutional positions; thus increasing the
supersaturation in the vicinity of the precipitate. The terms A\?c; = K°¢/D¢ are introduced
for symmetry. Excluding from this system the concentration ¢ we obtain the equation

(& df1/,  1d ,de de, 1 (RY’dR
K* dr |c Acs ca @ )|t S DE\r) dr’ (7114

Knowing the solution of Eq. (7.114) we can find ¢ from Eq. (7.113). The vacancy concentra-
tion ¢ in the matrix satisfies the equation

1 d QdCf/ 2 e —e\ __
2 @ A (et =¢)=0 (7.115)
from where
€ =€ R € —=e
¢ =72+ = (cS(R) —¢5) exp[-A(r — R)]. (7.116)

The boundary conditions far from the precipitate for the set of Egs. (7.112), (7.113), and
(7.115) are
=7, ¢il =G, =7,. (7.117)

c?|
r—00 vlr—o00

At the precipitate boundary ¢(R) = cp. We obtain the values ¢;(R) = ¢;, and ¢ (R) = ¢¢ by
considering the point defect transformation at the precipitate—matrix interface.

It is obvious that point defects of the same species (only vacancies or only interstitial
atoms) cannot accumulate at the interface because it would lead to an unlimited growth of
stresses or to fracture. The absence of cracks implies that the interface absorbs interstitial
atoms and vacancies in equal quantities [16,332]. This may be accomplished by some density
n of point defect recombinators capturing alternatively interstitial atoms and vacancies at the
precipitate—matrix interface.

www.iran—m L\V‘dLLC(l m

Age Crwdivs 9 Olgils @ yo



7.4 Growth and Shrinkage of Precipitates under Irradiation 253

Let ¢ (I}) be the trapped-at-the-interface component of vacancy (interstitial) flux directed
from the bulk of precipitate into the matrix and I¢(If,,) is the corresponding component of
vacancy (self-interstitial atoms) flux directed into the precipitate. We can write

I = kin(1 - W), I¢ = kSn(1 — W)E, (7.118)
I} = kinWe, If, = kS, nW¢,,, (7.119)

Here ¢§,, is the precipitate self-interstitial atom concentration at the precipitate-matrix inter-
face, W is the probability for a recombinator to absorb an interstitial atom, nj,, Ky, mﬁ, ESm,
are the kinetic coefficients proportional to capture rates.

The probability W can be written directly via point defect concentrations at the interface
using the condition I} + I, = I’ 4 I¢ for the absence of accumulation of point defects of

one type (vacancies or interstitials)

17 e e
KiCi + Kip, C;
1-W=— O ZZ.’E Lt — (7.120)
KyCi + Ky Ci + KiCi + Kip, Con

To define the values of point defect concentrations at the interface one should solve the equa-
tions for transformations at the boundary

Ji =i+ 1, (7.121)
Jim = Lim, (7.122)
Ji = we, — vl + I, (7.123)
§é = —we + vt +I°. (7.124)

Here j7,, is the flux density of self-interstitial atoms directed into the precipitate, w is the
probability of the vacancy transition from the precipitate into the matrix, v is the reverse
transition probability. Equation (7.122) is the condition for self-interstitial atom absorption at
the precipitate surface rather than in the bulk.

In order to complete the set of equations (7.121) to (7.124) we should express the volume
flux density of point defects in terms of corresponding concentrations at the surface. To do
this we shall solve the appropriate diffusion problem in the matrix. So, for j,, we obtain

1+ AR
Jim = D (@ — o) (7.125)
R
Substituting this result into Eq. (7.128) we find
e -1
Cim = Ci |1+ i W E (7.126)

D, (14 AR)

By analogy we can express ¢, and ¢ via W using Eqgs. (7.123) and (7.124).
Let us assume that the precipitate-matrix interface is coherent. Then the condition ji = j¢
is fulfilled, from whence we obtain, taking into account Eq. (7.98)

6 K'R? KI\2R?
“ - . 7.127
= 3D (11 AR) = 3Ke (7.127)

www.iran—m LlV‘dLLC(l m

Age Crwdivs 9 Olgils @ yo



254 7 Segregation at Given Input Fluxes of Monomers and Radiation Effects

Substituting into this formula the maximum radius R(*) value from Eq. (7.109) we see that ¢
only weakly depends on 7. This statement is also valid when the interface slightly differs from
the coherent one, i.e., when it captures only a small fraction of point defects. We proceed to

consider this case.
From Eq. (7.114), we obtain

D¢ 1/ . v, AR -
Ez (¢ —7¢) = 1 <]f - A bRE - ﬁ%nq) )
where
_ Dy _
Ci = 7Df§\2 cK*
is the mean concentration of solute interstitial atoms far from the precipitate,
)\2
b=1- ,
(A*)?

A2cT A2\
)\* 2 — )\2 2 v 1 v

A=1+NR+winR/D.

It is obvious that

e

It follows from Eq. (7.126) that
~e —1 Dg *
Cim = Cpy = DeEN2 )

while from Eq. (7.120) we obtain

D€
Wa~1l-=-=x1.
D¢

On integrating Eq. (7.112) over 7’ from r to oo, we obtain at r = R that
~ dR
Dic(e—cr)+ Di(e; — ¢) = RE.
Substituting it into Eq. (7.128), we get

i _ e (cu K*> {L iy (1+ A%Z“)] A f(R)

dt v A2 R Dg K* A—b\*R’
where
K!n - 20a3c kinRc
— B v KBK’L 2 P2 x ™ o0
f(R) ( + De R) [3 AR+ keTR De },
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(7.128)

(7.129)

(7.130)

(7.131)

(7.132)

(7.133)

(7.134)

(7.135)

(7.136)

(7.137)

(7.138)
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2. T
B=A (1 + AKC: ) . (7.139)

In the absence of irradiation the equation A = f(R) has only one root R(~) = R, and the
expression for dR/dt takes the usual form

@ :DecT

(E — CR)
dt '

- (7.140)

Under irradiation besides the critical radius R(~) there appears one more root R(*) > R(~)
that is the maximum precipitate size. It follows from the fact that function f(R) is concave
and goes to infinity when R = 0 or R — oo. Furthermore, as stated above, the irradiation
leads to the shift in the phase equilibrium because the difference A — min (f(R)/R) plays the
role of the supersaturation. Let us define the criterion of smallness of the parameter n by the
inequality

Kin AL/2
i 7.141
7S e (7.141)

implying that the expression for dR/d¢ is given by Eq. (7.99).

7.4.4 The Case of Incoherent Precipitation

In the limit opposite to that described by inequality (7.141) the precipitate—matrix interface
absorbs the majority of point defects coming to it. This may be shown to result in the follow-
ing: ¢¢ — ¢I', and ¢;,¢¢,, — 0if n — oo. Consequently, the second term on the left-hand
side of Eq. (7.113) greatly exceeds the right-hand side term that can be safely neglected in this
case resulting in the following equation:

Ci(T) —C; Ez — G
= 7.142
) —c G- e
Substituting it into Eq. (7.112) we obtain
drR ¢ 1 cct
— =—_———|DC | =% — Di (e —¢)|, 7.143
dt ~ o RV (r) [ ”C”(Eg CR)+ ac C)} (7.143)
where
oo d ,
_e r
V(r)=R(c) / ek (7.144)
Assuming ¢; = 0, ¢¢ = ¢!, D§,, = D¢ and taking into account that
T
Dt = D¢ (e —cl), - <L (7.145)
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256 7 Segregation at Given Input Fluxes of Monomers and Radiation Effects

we arrive at
dR 1+ AR cT ¢ (1+ AR)
— = D¢ (¢ — 1+2 v In -2 . 7.146
a D er) == I g S T (7.146)

In this expression the term DS¢S¢ (1 + AR) /R describes the influx of interstitials from the
matrix, while —D¢¢5cr (1 + AR) /R is related to the outflux of substitutional solute atoms to
the matrix.

If the irradiation dose rate is low, then (Ei — cf) /cI' <1 and the growth rate expression
takes the usual form dR/dt = D¢c; (¢ — cg)/R since V(R) ~ 1. Note that in this case the

above-discussed dissolution mechanism does not work.

7.4.5 Conclusion

We have considered a purely diffusion mechanism of precipitate dissolution under irradiation
creating interstitials and vacancies within the precipitate bulk. Diffusion outfluxes of vacan-
cies across the coherent precipitate—matrix interface decrease precipitate volume, while the
interstitials outfluxes carry out its material and decrease its mass. This leads to an increase
in the critical size and to the appearance of the maximum size that does not depend on the
precipitate number density and volume fraction. This mechanism is the most essential one for
dilute solid solutions being of first order in vacancy concentration. So one need not to consider
effects of second order such as the inverse Kirkendall effect or diffusion of solute atom-point
defect complexes (see, e.g., [218]). Note that the interface coherence, which is realized for
the case for small enough precipitates, is essential for this mechanism. Usually there exists a
threshold size of the coherence failure. If this size exceeds the radiation-induced maximum
size then precipitate growth should saturate at the maximum size, and a stationary state should
be achieved under irradiation far away from thermodynamic equilibrium. In the opposite case
the precipitate coarsening is expected to take place without saturation.

Note that the proposed mechanism of precipitate dissolution can operate simultaneously
with a well-known recoil mechanism under the cascade irradiation. However, in the case of
low energy irradiation (e.g., electron irradiation) and dilute solid solution the only possible
mechanism is the one under consideration in this chapter.
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8 Formation of a Newly Evolving Phase with a Given
Stoichiometric Composition

8.1 Introduction

A large number of studies, including monographs, have been devoted to the investigation of
the kinetics of first-order phase transitions [24, 28,94, 113,119, 136, 137, 153, 206, 245, 246,
294,318,329,337,351]. Nevertheless, a wide spectrum of problems remains unsolved as yet.

As one restriction in the applicability of the theory to experiment, most of the mentioned
analyses are devoted to single-component systems. Already homogeneous binary nucleation
is more complex as compared to single-component nucleation. In part, these complications
arise from uncertainties in the knowledge of the composition of the critical clusters and the
related problem of the compositional dependence of the critical cluster surface tension. These
limitations in the application of the theory to experiment are even more pronounced in the
case of phase formation in multicomponent systems.

Moreover, in the majority of previous studies, attention is directed mainly toward the
determination of the so-called steady-state nucleation rate or, in other words, the steady-state
flux in cluster-size space. Steady-state conditions can be realized in real systems, however,
only for limited periods of time or when the state of the solution is artificially maintained
stationary by some appropriate real or supposed mechanism (cf., e.g., [94,337]).

In most cases of interest, the degree of metastability or the state of the ambient phase
changes in the course of the phase transformation because of depletion effects due to cluster
formation and growth. Different aspects of the effect of depletion on the course of first-order
phase transitions have been studied by various authors (see, e.g., [20,28,29,91,93,139,217,
220,226,325,330,331,344,350]. As it has been shown (cf. [220,226,331]), depletion effects
affect nucleation quantitatively and determine qualitatively the whole course of first-order
phase transformations proceeding by nucleation and growth. As a result of such depletion
effects, in particular, only a finite number of clusters develops in the system (cf. Chapters 3
and 5 and [164,298)).

An extended theoretical analysis of the kinetics of new phase formation of single-compo-
nent systems via nucleation and growth has been given in Chapter 3. In the present chapter
these analyses are extended to multicomponent systems. In order to remedy various problems
encountered in the description of phase formation an additional assumption is employed; it
is assumed that the new phase has a well defined but arbitrary composition. Using this as-
sumption, the kinetic equations governing nucleation and growth, can be reduced to a relation
identical in its form to the respective expression for phase formation in single-component sys-
tems [293, 300, 304]. However, as will be shown in the course of the analysis, the effective
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258 8 Formation of New Phase with a Given Stoichiometric Composition

diffusion coefficients and the effective supersaturation have to be expressed as nontrivial com-
binations of the thermodynamic and kinetic parameters of different components involved in
the phase formation process.

In the analyses we assume (cf. Chapters 3 and [298]) that, for the whole course of the
process of nucleation, at any time a quasisteady distribution function with respect to the size
of the new phase particles f(n, t) is established in the range of cluster sizes 1 < n < n.. Here,
as previously, n denotes the number of structural units (or, quasimolecules) in an aggregate (or
cluster) of the newly evolving phase, and n. is the critical size of the aggregate. Remember
that the critical cluster is an aggregate of new phase particles in unstable equilibrium with the
solid solution. Its size changes with variations in the state of the ambient phase. Similarly, the
quasisteady-state distribution with respect to cluster size in the range n < n, is determined
by the current state parameters of the solid solution. In other words, for the range of cluster
sizes n < ., the time of adjustment ¢, of the distribution function f(n,t) and the flux
J(n,t) in cluster-size space to the current state parameters of the solid solution is much less
when compared to the characteristic times of variation of these parameters. Generally, these
conditions are fulfilled.

In line with the classical approach, we assume that the aggregation process of the newly
evolving phase proceeds via incorporation and emission of individual structural units exclu-
sively. This way, the smallest aggregate of the newly evolving phase corresponds to n = 1.
Further, we go over from a discrete description in terms of a set of kinetic equations to a con-
tinuous description in terms of the Frenkel-Zeldovich equation. In the domain of cluster sizes
n > ne > 1, we focus on the continuum description which is a reasonable approximation.
Moreover, the properties of the aggregates of the newly evolving phase approach the proper-
ties of their respective bulk phases. The situation when the aggregates properties may differ
from that of the macroscopic phase and depend on their size is considered in Chapter 11.

The kinetic equations are applied to the region of cluster sizes n < n. as well but mainly in
order to derive an estimate of the time to establish quasisteady-state conditions and to obtain
the boundary conditions at n = n.. Thus, the approximations arising from the application
of the kinetic equations to very small clusters are of minor importance for the results of the
analysis outlined below.

Once the stage of nonsteady state nucleation is completed (the stage of approach of
quasisteady-state conditions in the range of cluster sizes n < n, in cluster-size space), the
further evolution can be divided into a stage of dominant quasisteady-state nucleation fol-
lowed by the stages of independent and competitive growth (Chapters 3 and 4). The analysis
of the present chapter is devoted mainly to the description of the stages of quasisteady-state
nucleation and independent growth. For these stages, the evolution in time of the basic char-
acteristics of the nucleation—growth process is found in the form of the distribution functions
with respect to cluster sizes and the size-dependent flux in cluster-size space. Further, the
number of clusters of the new phase and their average size at the end of the independent
growth stage are determined as a function of the initial system supersaturation. Finally, esti-
mates for the duration of the stages of quasisteady-state nucleation and independent growth
are provided.

The state of the cluster ensemble at the end of the nucleation and independent growth
stages simultaneously represents the initial state for the process of competitive growth. The
theory of competitive growth or coarsening was presented in detail in Chapter 4. Thus, the
present analysis provides a basis for a complete quantitative description of the entire course
of first-order phase transitions in multicomponent&ystems.
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8.2 Basic Set of Equations 259

Until now it was assumed in our analysis that the different solute components do not in-
teract with each other, i.e., only the solute—matrix interaction was taken into account. This as-
sumption is in line with classical investigations of precipitation processes in solutions where
generally the case of a weak (perfect) solution is considered and will be preserved also in
Sections 8.1-8.4. In Sections 8.5-8.9 of the present chapter a generalization of the earlier ob-
tained results is presented and such interactions between solute atoms are taken into account
in a comprehensive manner (for first attempts in this direction see [21]). It is shown that the
general form of the basic equations remains the same but in these equations the concentrations
of different components have to be replaced by chemical activities, which are determined both
by the concentrations and the type of interactions between different components. A method
is developed allowing one an experimental determination of the interaction parameters of the
solute components and, thus, of the chemical activities of the solute components. The below
outlined theory may also be used to study nucleation processes in other fields of application
where interactions between the basic building units of the evolving phase clustering are essen-
tial for an understanding of the kinetics of nucleation and growth.

As a next step, a generalization of the kinetic equation commonly used for the descrip-
tion of the evolution of the cluster-size distribution is given. It contains in addition to the
regular hydrodynamic term describing the deterministic motion in cluster-size space a term
proportional to the first derivative of the cluster-size distribution function. This additional
term reflects diffusion-like processes in cluster-size space due to the influence of stochastic
effects on the growth kinetics. Moreover, another type of stochasticity is also accounted for
connected with a possible touching and merging of clusters in the nucleation—growth process.
Such effects are described by a collision integral. The influence of both effects on different
stages of the precipitation process is investigated.

8.2 Basic Set of Equations

We consider processes of formation of a new phase with a given stoichiometric composition.
The stoichiometric coefficients specifying the composition of the evolving phase are denoted
by v; and the number of basic structural units in the cluster or aggregate of the newly evolving
phase given by n.

The volume V of an aggregate of the newly evolving phase is then given by V' = nw;
withws = ; Viw;. Here w; is the volume of a structural element, w; is the volume of the ith
component in the ambient solution and in the newly evolving phase (i.e., we do not consider
differences in the respective volumes in both phases resulting from elastic stresses).

The basic system of equations, describing the kinetics of nucleation and growth, can then
be written in the form (see Chapters 2, 3, and [293,300, 304])

af(n,t oJ (n,t of(n,t 1 0Ad
Ft)l, o= Hc f(t)]i—g =1 — 0, (8.2)
coi = ¢ ( —l—l/l/f n,t)ndn. (8.3)
0
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260 8 Formation of New Phase with a Given Stoichiometric Composition

The first set of equations (8.1) describes the evolution of the cluster-size distribution func-
tion, f(n,t), and the flux in cluster-size space, J(n,t). The distribution function f(n,t) has
to obey the boundary and initial conditions as given by Eq. (8.2); T is the temperature. Here
it is assumed that the system can be brought suddenly into the respective metastable initial
state. Aggregation phenomena and their effects on the phase formation process, which may
occur in the course of the transfer of the system into the considered initial state, are excluded
from consideration (for the account of such additional transient effects cf., e.g., [140,244] and
references cited therein).

The number of nucleation sites is given by f(n — 0,t) and is determined by the number
of configurations, [, ¢/, which may result in the evolution of the first structural element of
the newly evolving phase. Further, conservation of the total number of particles results in the
set of balance equations (8.3) for different components forming the newly evolving phase;
¢; 1s the actual concentration and c;g the initial concentration of the i¢th component in the
solution. Note that all concentrations ¢; as well as the distribution function f(n, t) refer to the
respective numbers per single lattice site.

In order to solve the given system of equations, one has to specify the coefficients of
aggregation, wy, ,+1. As shown in Chapter 2 (see also [293, 300, 304]), these coefficients can
be expressed via the macroscopic growth rates dn/dt and the derivative (OA®/On) as

dn 1 0A®

@ 927 4
a T on 8.4

Here (OA®/0n) is partial derivative of A® which is the change of the thermodynamic po-
tential if in the solid solution an aggregate of the newly evolving phase with n structural
elements is formed. Both the aggregate of the newly evolving phase as well as the solution
are considered to be in a state of internal thermal equilibrium while the system as a whole is
in a nonequilibrium state. The change of the characteristic thermodynamic potential A®, due
to the formation of such an aggregate with n structural elements, can then be expressed as

AD =n <M<S> -3 ymi> + 4maZon?/3. (8.5)
%

We then obtain immediately

2

1 0A® 1 81 oa
_ (s) _ o -1/3 _ 27 s
ioT on kel (u Zi:wuz> +p0Bn" 7, B 3 EaT (8.6)

In the above equations, 1.(*) is the chemical potential per structural element in the new phase,
pi is the chemical potential of the ith component in the solution, a, = (3w,/47)"/? is the
characteristic size parameter of the structural elements, and o is the specific interfacial energy
of the aggregate of the new phase in the solution. Note that, since the composition of the
aggregates and the specific volumes of different components are independent of cluster size,
the surface energy o has to be considered as independent of cluster size as well.
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8.2 Basic Set of Equations 261

The size of the critical aggregate, n., for a cluster, being in unstable equilibrium with the
ambient solution, is determined via (OA®/9n) = 0 or via

nl/3 = p (8.7)

Z Vilki — M(S) .

For a weak or perfect solution, where p; = v; + kg7 In ¢; holds, we get, in particular,

S VE D o [(H i vit

Te N H clu, ) koo exXp < kJBT . (88)
1 i
n koo

Here with ko, the chemical equilibrium constant has been introduced.
For any arbitrary value of n we may write immediately

A®(n)  fpn 3 2/3 1 0A® -1/3 -1/3

[ S TR L inf on =0 (7 =m0,

1 0?°A® B (8.9)
kT On®  Gnt/’ '

resulting in

AP (ne) B o A® (8n) _ 9802/ S — 6ne'” (8.10)

kT 20 kT e T g '

1 0%*A®(n) 1 B _as

A (n) _ 1 _ . 8.11

2kgT  On* |, _,. In2 6 ®-11)

The quantity dn. describes the range of the size n values in the vicinity of the critical cluster
size, where the relation A®(n.) — A®(n) < kg7 holds.

The expressions for the aggregation coefficients w,, 1 can be found from the analysis of
the mode of aggregation of the clusters. For the small-sized clusters, prevailing in the stage of
nucleation, the growth is limited kinetically (e.g., Chapter 3 and [304]). In the transient stage,
the aggregates of the newly evolving phase are sufficiently large, so that the growth rate dn/d¢
and the aggregation coefficients can be found from the solution of the diffusion equation.

In order to arrive at the respective expressions, first we have to take into account that the
partial fluxes j; of individual components have to fulfill the relations [280, 293,296,299, 300,
304]

g _ g
1) Vg

— ... (8.12)
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262 8 Formation of New Phase with a Given Stoichiometric Composition

In addition, we may write down for any partial flux j; [284,304]

_ 1 0AD®)
AT R?j; = —wni,m+1kB—TW (8.13)
3a; D;ein?/3 [ wy 2/3 -
= W (w> (1 (i) — i (cni))
AW =" i (ens) =i @)] 5 p = i (i) - (8.14)

Here 11(*) is, as previously, the chemical potential of a structure element of the new phase,
wi(cni) are the chemical potentials of the particles of the ith component in the solution in
equilibrium with a cluster of size n, p;(¢;) are the chemical potentials of the particles of the
ith component in the solution in the immediate vicinity of the aggregate, {c,;} represents a
set of concentrations of the particles of different components which result in an equilibrium
with an aggregate of size n, while {¢;} represents the set of concentrations in the vicinity of
the surface of the aggregate. We get

HAD() _ 3a,D; - ((ws \?
on.: == (Ni (C’L) = M (Cni)) ) Wnini+1 = a2 Ci ( ) n*/3, (8.15)

Here w,,, »,+1 is the frequency of incorporation of particles of the component 7 into the new
phase aggregates, «; is the sticking coefficient (0 < «; < 1), D; is the partial diffusion
coefficient of the component i, and a,,, is the lattice parameter of the matrix (w,, = 4ma2,/3).
The radius R and the particle number in the aggregates are related via n = (47 R3/3w;),
ws = 4ma? /3. For the rate of growth of an aggregate of size n, we get from Eq. (8.12) and
the equation ws = ). v;w;

dn  4nR?
n_oT Zwiji:47rR2%. (8.16)

dat w :
As anext step, we insert Eq. (8.13) into Eq. (8.16). Afterward, we may divide the equation

at the coefficient in front of the term [p(¢;) — p;(cp;)], multiply the resulting equation with v;
and take the sum over all values of 7. As a result, we obtain

dn 3D [ws \*/? . _
T () @)~ ).

dt a2, \wm

(8.17)

Loy Y
D*_ p azDZ'c}
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8.2 Basic Set of Equations 263

In the limiting case of a weak solution, we get, in particular,

[J [

AP = —nln | o | +droain®®, k= [[(en)” = kooe®/ ) (8.18)
DAD [T(eq)™
_— = —1 i
on . ky, ’

resulting in

dn OA®  3D* [ wo\*? L. (TLc

E = —wn77l+1a—n = a?n <wm> n / ln ( kn ) 5 (819)

d_n _ 3D* & 2/3 n2/3ﬂ 1 B 1 w _ 3D* W 2/3 n2/3

dt a’%n Win ni/s n1/3 ’ n,n+1 a%n W .
(8.20)

Equations (8.19) and (8.20) describe the flux of particles to the aggregates of the newly evolv-
ing phase in the immediate vicinity of the aggregate. The concentrations of different com-
ponents ¢; in this region are determined by the interplay of losses to aggregation and input
fluxes due to the diffusion from the distant environment. For the determination of these con-
centrations, the respective diffusion problem has to be solved self-consistently (see Chapter 3
and [283]).

If the concentrations of different components in the new phase and the ambient solution
differ considerably, then, in order to find the rate of growth of the aggregates of the new
phase, one may employ the steady-state solution of the diffusion equation and the effects of
the motion of the interface may be neglected (see Chapters 3 and [283]) with an accuracy of
the order ¢;/c; < 1, where ¢ are the concentrations in the solution in equilibrium with a
macroscopic aggregate of the newly evolving phase. In such case, we have

d 3 N2 D;e -G
d—’z —4rR?L — 3 (w ) LA G, (8.21)
Vi Wi Qn, Vi

From Egs. (8.13) and (8.21), we arrive at the following expression for the determination
of the concentrations ¢; (for the case of a weak solution):

Ei 1 C; — c
n({=~+)=—->2_—, 8.22

! (%) anl/3 ¢ ®:22)
Equations (8.13) and (8.22) and the equilibrium conditions at the interface of an aggregate

completely determine the sets of concentrations {¢; } and {c,;} for the stage of nucleation. In
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264 8 Formation of New Phase with a Given Stoichiometric Composition

the limit a;n'/3 < 1 (which is usually fulfilled in the stage of nucleation), we get &; 2 ¢; (cf.
Eq. (8.22)). In this case, it is more convenient to employ Eq. (8.19) for the determination of
the growth rate dn/dt¢ with the replacements ¢; — ¢;, In(¢;/cin) = In(c;/cin)-

In the transient stage, when the size of aggregates is sufficiently large (i.e., the inequality
a;n'/3 > 1 holds), the relation ¢; = ¢;,, is fulfilled (cf. Eq. (8.22)). In this case, one has to
employ directly Egs. (8.21) and (8.22) for the determination of dn/d¢.

8.3 The Stage of Nucleation of Clusters of the Newly
Evolving Phase

The description of the kinetics of nucleation is significantly simplified after the time interval
t,, when a quasisteady-state flux in a cluster-size space is established in the range 0 < n < n,
(e.g., Chapter 3). Indeed, in this case it is possible to employ a simpler version of the basic
equation (8.1) for the determination of the flux in cluster sizes space, J(n,t). The respective
relation is valid in the whole stage of steady-state nucleation, ¢, < t < ty. Hereby, the
boundary conditions for the flux in the range 0 < n < n. may be expressed via the boundary
conditions for the distribution function f(n, t). Once the flux J(n, t) is known, the distribution
function f(n,t) can be found straightforwardly.

An estimate of the time lag, ¢,-, can be derived in the same way as outlined in Chapter 3.

We get
2/3 2/3
W Ne
— . 8.23
(2) ™ (5.23)

An overview of different alternative attempts to estimate this quantity is given, e.g., in [30,94,
95]. The results, obtained by different methods, deviate only slightly.

After the completion of the transient stage to steady-state nucleation, the equation for the
determination of the flux in cluster-size space may be written in the form (cf. Section 3.4)

aJ (n,t) 82J(n,t)+ 1 90A®dJ(n,t)
ot ot on?2 kgT On  On

2
_sal,

ty =
3 D~

(8.24)

with the boundary conditions J (n,?)|,,_,, = J (n.). Hereby we chose the moment of time
t = 0 as corresponding to the beginning of the stage of steady-state nucleation, i.e., we make
the replacement ¢t — ¢, — t.

In the derivation of Eq. (8.24), terms of the order (¢/c)J (8J/0t) " ~ (tn/t.) < 1
have been neglected, where ¢, is the characteristic time of change of the concentration in the
solution. During the time of steady-state nucleation, 5, the change of the concentration in the
solution is insignificant for the case n.|,_, > 1. Equation (8.24) is thus valid for any moment
of time ¢t < ¢ty or when J(n,t) > 0 holds for any value of n. In this stage, the number of
supercritical clusters increases.

For t > ty, the quantity J(n.) becomes practically equal to zero and the process of
formation of new clusters is terminated. Their number remains then nearly constant at the
subsequent transient stage to coarsening for a time £y > t. For ¢ > ¢ the further evolution
is governed by processes of competitive growth or coarsening (Chapter 4).
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8.3 The Stage of Nucleation of Clusters of the Newly Evolving Phase 265

In the considered stage of steady-state nucleation ¢ < ¢y, it is possible to express f(n,t)
via J(n, t) as was done in Section 3.3

F(n,t) = exp [ AP (")} 7exp (A(I) (”/)> AU (8.25)

kT kT Wnirmi+1

n

With J(n,t) = J(n.), 0 < n < n. + on. and the boundary condition for f(n,t) atn — 0
we get

[ = /exp (Aq) <”/)) T 4 Ad(0) = 0. (8.26)
@ 0

kT Wn' n'+1

Since A®(n) has a sharp extremum at n = n. (A®(n) = A®(n.) — kT (n —n.)?on;2 >
1), we get with Eq. (8.11)

[38 D* [ ws \*/3 AD (n,
J(ne) = ga% (C:@) Hc”b exp [ kB(; )} ) (8.27)

Equation (8.27) is reduced, evidently, to the respective expression for the steady-state nu-
cleation rate in single-component systems in the limiting case of precipitation of only one
component, Eq. (3.79).

For n < ng, in Eq. (8.25) the maximum of A® is located inside the limits of integration.
Moreover, J(n,t) = J(n.) holds and we get

y Ad(n)] 1 n—ne
)| Hclexp[ kB(T)]2{l—erf< 5 )] (8.28)

Here erf(x) = —erf(—x) is the error function.

In the limiting case of a saturated system, we have n. — oo and Eq. (8.28) is reduced to
the well-known steady-state cluster-size distribution in an equilibrium state, Eq. (3.85).

In the stage of nucleation, we have J(n,t) > 0 and for any given value of n this quantity is
determined by the respective values at n’ < n. In the later stages of the process, the situation
is different. There we have J(n,t) < 0 for n < n. and J(n,t) > 0 for n > n.. It follows
that in the stage of nucleation one may determine the functions J(n, t) for different ranges of
n values by different methods and take as the boundary conditions the values determined via
the solutions on the left-hand side of the respective intervals.

In order to proceed with the analysis, we introduce the dimensionless time 7 = ¢ /fwith

i1 = D*a;2 (ws/wm ). Further, we note that in the range 1 < n/n. < 8 the quantity

-1
A=3 (n/nc)l/3 + (n/nc)_1/3 + 1} varies only in between the limits from 1 to 6/7 (see
Chapter 3). Consequently, in this range of cluster sizes we may set 3n>/3 (n_l/ 3 —ne 1 3) =

—(n— nc)nc_2/3 and A = —(n — nc)nc_Q/S.
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266 8 Formation of New Phase with a Given Stoichiometric Composition

The kinetic equation for .J(n, 7) = Jt can then be written in this range of cluster sizes as

aJ 3 0 . 5502
J|n:nc =J (nc) = Jo%: J (TL, T)|n>nc,‘r:0 =0. (830)

The replacement n?/3 — nz/ ® in the second term on the right-hand side of Eq. (8.29) de-

creases the diffusion contribution to the flux for n > n.. However, in the considered range
this contribution is small (see Chapter 3 and [298]). In the vicinity of n ~ n., the replacement
represents a quite accurate approximation.

In order to solve Eq. (8.29), we make the ansatz J (n, 7) — J(¢(x, 7),t(7)) and determine
the functions ¢ and ¢(7) via

2/3

Y = (n—ne)exp(—0T), 6= pn;%3, t(r) = 37;} (1- 6_257—) . (8.31)
After this substitution (8.29) takes the form

aJ  0%J

= any J\nznc =J(n.), J (n,T)|n>nuT=0 =0 (8.32)

with the solution

J=J(n) {1 — erf <;j’/¥>} = J (ne) [1 — erf (W)] : (8.33)

It follows that after a time 7, ~ 1/6 ~ 7,. in the range n, < n < g = 8n, a steady state with
the flux J = J(n.) establishes. Thus, the time of establishment of the steady-state conditions
in the range n < g = 8n, is of the same order as the time of establishment of the steady state
during nucleation in the range 0 < n < n,.

The distribution function over cluster size in the range n, < n < g ~ 8n, can be derived
from Eq. (8.25) via a Taylor expansion of A®(n) in the vicinity of n:

T AD (n) — AD (n/
f(n,7)= " Jo 1 /exp{—( (n)kBT (n ))} dn/ (8.34)
n,n+
JO m a 2 2
R Zl—erf(= a /(4b )
2wn,n+1\/;[ o (26)} € >
1 OAD 1 9%?Ad
— > = —— > Ne. .
a 5T on = 0, b SkpT O >0, n>ne (8.35)

The function f(n,7), determined via Eq. (8.34), goes over continuously into the expression
derived via Eq. (8.28) for n = n.. This way, the boundary conditions for J(n,7) = J(n.)
hold after the time interval 7 ~ 27,. at ¢ = 8n..
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8.3 The Stage of Nucleation of Clusters of the Newly Evolving Phase 267

In the range n > g, it is also possible to further simplify the kinetic equation (8.29)
describing the time evolution of J(n,7) and obtain an exact analytic solution. However,
one has to account for the decrease of the degree of metastability of the system due to the
continuous formation of new and growth of the already formed supercritical clusters (depletion
effects). In this way, an expression for the time interval of dominating steady-state nucleation
may be obtained.

In the range of cluster sizes n > g ~ 8n,, we get for the case of a weak solution

) N (8.36)

Here ¢;(0) = ¢;o is the initial concentration of the particles of the ith component in the
solution. These quantities obey the inequality c;o > c¢;.
The boundary conditions at n = g may be written in the form

A® (n,) _ A (n.(0)) o
T~ kT e 90(7):_1]01:[(61'(0)

J(ne) = J (nc (0) exp (=nc (0) ¢ (7)) - (8.37)

As evident from Eq. (8.37), for n.(0) > 1 a small change of the quantity ¢ results in a
significant decrease of the nucleation rate. Processes of nucleation are terminated practically,
if the condition p(7n) = 1/n.(0) is fulfilled.

In the considered range of cluster sizes, the equation for the flux may be formulated most
conveniently when the variable = n'/3 is employed (see Chapter 3 and [293,300]). We get

o _ BOJ | 1 8

o o Taza (8.38)

where the boundary condition is given by Eq. (8.37). In Eq. (8.38) several terms are omitted
which are small in comparison with the quantity (3/2r.)/(d.J/dr) (i.e., (2r=3/3)(8J/0r)
and (3/r)(8J/0r), (3 > 1)). Moreover, the substitution 3r=2 — 3r_2 is made (in the
considered range the inequality > 2r. holds). Such approximation results in a sufficiently
accurate description of the spectrum of the viable nuclei, which give the dominating contribu-
tion into the law of conservation of particle numbers. However, the mentioned approximations
result in some additional broadening of the front of motion of the aggregates in cluster-size
space (see Chapters 3 and [293,300]).

As a next step, we redefine the variable r viar = n'/3 — g!/3. The solution for .J is further
expressed as

3 3
J =exp (567"7“0) exp (—1527) p(r, 7). (8.39)
A substitution of this expression into Eq. (8.38) results in the following equation for the func-
tion p(r, 7):

dp op?

- = 2 _1_
5, = Bre) 53 (8.40)
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268 8 Formation of New Phase with a Given Stoichiometric Composition
The solution of Eq. (8.38) with the boundary conditions (8.37) reads then

rf o2
J = J (ne(0)) /2 <3r>

T

/

[ ere@o(r) =382 (r—7") ja=3rr2(a(r—)) _ AT (8.41)
(r— T’)3/2

0

With the variable z = rr.(3(r — 7/)) 7'/ we may write down the expression for .J in the
form

J = J (ne(0)) % / exp [—nep (1 — 3rPr2z72/4)]
7"rc(47'/3)_1/2

X exp [— (3Brrez=t /4 — z)z] dz = J (n.(0)) % exp [—nep (1 —rref1)]

X / exp [— (3ﬁ7“7“cz_1/4 — z)ﬂ dz. (8.42)

z(7'=0)

In Eq. (8.42), the term exp [f (3,67'7"02’1/4 - 2)2} has a sharp maximum at z = 2. In
the vicinity of zy we may write

3 Brr. 2 3
<46T; — z> ~ 4(z — 20)?, 20 = (46rrc>. (8.43)

With such approximation, we arrive at

J(n,7) = J(n:(0)) exp[—n.p(ro(n, ) i/exp %) ae’, (8.44)
\/7_T
§
€=2(2(7 =0) —z) =2 ( Z;C/g - zo> , (8.45)
o(n,7) =71 —rr.,f " —T—(T‘—Tg)%,
70 (Pmax, 7) = 0, To (91/3, T) =, Tmax (T) = Tg + 57}_17'- (8.46)

Here the redefinition of 7 has been taken into account (r — r — 7).
The dependence r,.x(t) describes the motion of the cluster front in cluster-size space
along the characteristics of Eq. (8.44). The diffusiveness of the front is determined by the
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8.3 The Stage of Nucleation of Clusters of the Newly Evolving Phase 269

integral term in Eq. (8.44). This integral is practically equal to unity for £ < 0 and equal to
zero for £ > 0. Approximately, we may thus write

J(n,7) = J (nc(0)) exp [=nc (0) ¢ (70 (1, 7))] 6 (rmax(t) = 7) (8.47)
with
e (0) =75+ 25 =1, +1n (Hkoj 3
(8.48)
0(z) =1 (forz > 0), O(z) =0 (forz <0).

Since the broadening of the front of motion of the clusters in cluster-size space is small,
we may employ Eq. (8.47) for the application of the laws of conservation of the numbers of
particles. These laws can be written as

C; i Ci0 T
=—1 — ) = sIn| — ), co=c+v ,7) dn,  (8.49
4 nH() Z”“(c) € c—i—y/nf(nT)n (8.49)
7 3 0

_ [ [ on
¢ =1 /ng dn=—v; | J(1)g— /J (70) o7 dm | . (8.50)
0 0

By definition of the quantity 7o(n, 7) we may write down (employing Eq. (8.44))

,’ 3
rg +In (H [c( ) (r — TO)] . 8.51)

With Eq. (8.51), we may go over in Eq. (8.49) from the variable n to the variable 74 (n, t). We
get then

n(t—1) =

o0 MNmax T0 (nmax,'r):O T
d d
/J(To (n,7)) dn = / J (10) dn = / J (1) <% dry = —/J(TO) 2 dr,
d’TO dTo
g g 70(9,7)=T 0
(8.52)
where dn/dr = —dn/dry is the rate of growth at the moment of time 7 of those aggregates
of the new phase, which have grown up to the size g at the moment of time 79, n|T:TU =g,
r|T:TO = rq. This way, we get the following expression for ¢:
de v; de; Vf /T dn
-+ _ _ e -+ Jg— | J —d . 8.53
dr Z c; dr (Z Ci g (70) dry 70 (8.53)
¢ 0
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270 8 Formation of New Phase with a Given Stoichiometric Composition

Equation (8.53) has a clear physical meaning (cf. also Chapter 3 and [293,300]). The
decrease of the degree of metastability ¢ is due both to the formation of new supercritical
clusters (first term in Eq. (8.53)) as well as to the growth of already existing aggregates (second
term in Eq. (8.53)).

Taking the integral in Eq. (8.53) by parts and employing additionally Egs. (8.47) and
(8.51), we obtain,

dy vi
P () =0, (8.54)
Here J(n.(0)) is determined by Eq. (8.27) and
(1) = 1 (1 = 70)|_g = (rg +a7) = ripa (1), (8.55)
« 2/3
a=In (U ci”f‘/koo) ; T= %: aDgn (5;) t, Tmax (T) =14 + at. (8.56)

In Eq. (8.55) a small term of second order in Jy < 1 has been neglected (remember, Jj is
by definition the flux per lattice site). Indeed, since we have d¢/dry ~ Jy, we get

T

d
—Ne / Joe_”“‘P(TO)—LPn (1 —70) drg =~ JZ. (8.57)
d’To
0
In Eq. (8.55), we may set ¢; >~ c;o since the variations of the concentrations remain small
in the stage of nucleation. An integration of this equation then yields (with ¢|__, = 0)

l/-2 JO 4 4 1
— ) - — ~n. <7< . .
© ( g CiO) 1 [(Tg +ar) Tg} , polrn)=nst, 0<7<7y (8.58)

The time of steady-state nucleation (determined via pn.(0) = 1) is then obtained as

2 3

-1
: 1
= [(20)0%] 5 o

As evident, 7y depends weakly on 1. A substitution of the expressions for n. and a (cf.
Eq. (8.56)) yields in the limit atn > 7y

~1/4
2
™~ = t—g =443/ (Z V_z> Jo_l/4' (8.60)

t — C;0
K2

In order to determine the distribution function f(r,7) in the considered range of cluster
sizes, 7 > g'/3 = 2r,, we first have to find the flux, J(r, ) given by Eq. (8.47). However, in
order to get an explicit expression, we first have to find ¢ (7 (r, 7)) from Eq. (8.58). Using
rey < ar, we have for n.p (7o(r, 7))

neg (70 (1, 7)) = (7)) | (TO (r T))4 — (Wy (8.61)

@ (Tn) ™~ Tmax (TN) = Tg
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8.3 The Stage of Nucleation of Clusters of the Newly Evolving Phase 271

It follows from Eq. (8.61) that in the considered time interval (7 < 7p) and cluster size

range (1 < rmax(7n)), the quantity n.o (7o(r, 7)) is much less than unity. For this reason,
Eq. (8.47) yields

J = Job (rmax(T) — 1), 0(z)=1 (z>0), O(z)=0 (z<0). (8.62)

In the range r > 7, and for n, > 1, the interfacial effects as well as the influence of
the diffusion term in the basic equation can be neglected. Then we get from Eq. (8.34) with
—(kgT)™' (0A®/On) > —0.5kpT (0> A®/On?), (n = 8n, = r3)

1
P an, = (%) = 0 (i (7) =)0 — 7). (8.63)

Here dr/dt = a holds at v, = 27, as it follows from Eq. (8.17). We also took into account
in Eq. (8.63) the relation f (,7) = f (n,7)3n?/3. This way, the distribution function in the
stage of nucleation is determined in the range 0 < r < r, via Eqgs. (8.28) and (8.34), while
for the range mmax > 1 > 74 this function is given by Eq. (8.63) for 7y > 7.

The number of viable clusters per lattice site, formed at 7 < 7y, is then given by (cf.
Eqgs. (8.62) and (8.63), rmax = a7 atr > rg)

T Tmax(T)
N = /J(g, )dr' = / f(n,7)dn = Jyr. (8.64)
0 rg

The upper limit of N is thus given by

1/4
Nuax = Jor = 41/4373/473/4 (Z v /cw) : (8.65)

The largest size of the clusters, which may be formed in the stage of steady-state nucle-
ation, is given by

max
o0

N3 = Fmax = a7y =In <%) TN- (8.66)

Further, the amount of matter, M, concentrated in the newly evolving phase, is given at atny =
T'max > T'g DY

Tmax

2

Jort 1 2\ 71

M= 3dp = H0max _ — E = ) .

/ fr,r)rdr i - ( Cw) (8.67)
gl/3

For the change of the concentrations of different components, we get, consequently,
-1
Ac ¢ —c (T Vi 1 vy v?
_:M:LOM:_LO Zi <nj'< 1. (8.68)
Cio Cio Cio N¢ Cio Cio
\\'\‘\'\\'.iI'L\H*I“'JV“ILLC()lﬂ
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272 8 Formation of New Phase with a Given Stoichiometric Composition

This way, at n.(0) > 1, the stage of steady-state nucleation is terminated at relatively
small variations of the concentrations of the components forming the new phase. On physical
grounds, this result is a consequence of the exponential decay of the flux in dependence on
ncp (cf. Eq. (8.47)). It follows further that all quantities in the preexponential factors may be
set equal to the respective values in the initial state.

8.4 The Transient Stage

After the completion of the stage of intensive nucleation of clusters of the newly evolving
phase, a new transient to coarsening stage of the phase transition begins (for 7 > 7). In
order to find the cluster-size distribution function in the transient stage, we have to take into
account the following circumstances. First, the initial state for the cluster-size distribution is
given by the distribution function formed in nucleation to the moment 7 = 7. Second, in the
transient stage we may neglect the diffusion term in the basic equation due to the high degree
of smoothness of the function f(n,7) for 7 > 7n. As will be shown below, in the range
r > 1y = 2r. (most of the matter of the new phase is concentrated in clusters having sizes
in this range) one can neglect the effect of surface energies as well. This way, in the transient
stage, similar to the late coarsening stage (see Chapter 4) of the process of phase separation,
we may write

3f 5' d?“ _ _ 1/3
E_FE [(a)f(r,t)] =0, r=mn"'°, (8.69)

fO ey = fa (1, 7N) 0 (rg — 1)+ fu (r,7N) 0 (1 — 74) 0 (Tmax (Tv) — 7). (8.70)
Here fr(ro, 7n) is determined by Egs. (8.28) and (8.34) for » < r, and by Eq. (8.63) for
r > r4. The growth rate dr/dt is given by Eq. (8.19). The solution of Egs. (8.69) and (8.70)
reads f (r,7) = f (r0,0) (Oro/O0T) or

fr,m)=|fu(ro,7™5)0 (rg —10) (8.71)

87‘0
or’
Here 1o = ro(r, 7) is the characteristics of Egs. (8.69) and (8.70) determined by Eq. (8.19).
The time 7 = 0 corresponds, by definition, to the beginning of the transient stage.

The characteristics is determined from the system of equations, Eq. (8.21), and the con-
servation law, Eq. (8.3), as

+ fH (7’0, TN) % (7‘0 — ’I“g) 0 (Tmax (TN) — To)

dr? Ws 2/3 _
E =2 (w ) a'rrLQBina r|7—:0 =To, (8.72)
D; »
Bin, = o (¢i = ¢in) = Bjp = -+~ = B, H (Cin) " = koo exp (%) , (8.73)
[ n
cio = ¢; +v; M, M = /fndn, (8.74)
0
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8.4 The Transient Stage 273

In the transient stage, for n > n., we may replace G;;, — Bico O Ci, — Cino and finally
koo exp(fn=13) — koo.

For n < n., an analytic solution for the characteristics cannot be found in the general
case for arbitrary ¢;(7). However, this range of cluster sizes is not important in the transient
stage. The degree of metastability is decreased mainly by the growth of the large clusters,
n > n.(0). Small clusters, with n < n., present in the system at the initial moment of time,
disappear and give only a small contribution to the supersaturation. The range n < n.(t)
will be characterized by the growth of n.(t) and by the dissolution of clusters with sizes
ne(7) = n > ne(0).

From Egs. (8.72), (8.73), and (8.74), we get

v; dr? ws \/? 9
= Cio — UM — —— A= (2 - .
Cin Cio v; DlA d+ ) <Wm> Qpy s (8 75)
A Vs dr2\"
io — viM )" - —— ) = ke 8.76
1:[ (C 0 v ) ];[ ( DZA (CiO - I/LM) dt ) € ( )

The main contribution to the characteristic time of the transient stage gives the time in-
terval when dr?/dt — 0 and r > 8, M < M,ax. Here My, is the maximum amount (at
the given conditions) of the newly evolving phase per lattice site. This effect is particularly
well expressed for a sufficiently high degree of metastability in the initial state (e.g., for the
limit J] cf{j > koo in the case of a weak solution). In this case, the clusters of the newly

evolvilllg phase as well as the degree of metastability are sufficiently large, and surface effects
may be neglected. The late stage is reached, when the degree of metastability tends to zero.
Here surface effects become of importance, again, and determine the asymptotic behavior
(Chapter 4).

Taking into account the above comments, we obtain from Eq. (8.76) (employing a Taylor
expansion and the condition dr?/dt — 0) the following sufficiently accurate expression:

-1
dr? koo V2 1
| A Vi | 8.77
dt H (Ci() — VZ'M)VI lz Dz A(CiO — VlM)] ( )

%

At M < Mpax, Eq. (8.77) can be written in the form

d 2
st = —DegA(M — Myay),  tn <t<t; (8.78)
with

2

—1
1/42 1 Vs
DA = |3 L I — —
i D;A (CiO - ViMrrlax)] [ i (CiO - ViMrrlax)]

%

(8.79)
H (CiO - ViMmax)yi - koo

i
Here t is the duration of the transient stage of the process.
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274 8 Formation of New Phase with a Given Stoichiometric Composition

Note that the precise expression for dr?/dt for a single-component system is obtained
from Eq. (8.77) in the limiting case r > (3. A similar limiting result may be derived if one of
the components has a diffusion coefficient or a concentration much less as compared with the
other components. In these latter cases, the process of phase formation is determined mainly
by the behavior of this particular component. In contrast to the single-component case, each
growth step remains to be characterized by the addition of one structural element.

The number of particles of the newly evolving phase is given, again, by (cf. Egs. (8.65)
and (8.71))

[e’e] rmax(TN)
/f 70,7) dr ~ / f (ro,0) dro, (8.80)
0 Te
[e'e] 'f'max(TN)
M = /f (ro,0 7‘3 (ro,7)dr ~ / f (r0,0) r3 (ro,7)dro = Nmaxr?’(t). (8.81)
0 Te

Here we took into account that, in the transient stage, for the main part of the distribution the
inequality 7 >> .. (7xv) holds. For this reason, 73 practically does not depend on 7.
With Egs. (8.80) and (8.81), we may reformulate Eq. (8.78) as

dr? .

O D AN (P =) Tl = I SESt 682
with

Tmax = (Mmax/Nmax)1/3 = n%n/sx' (883)

M. 1s given by Egs. (8.80) and (8.81).
In Eq. (8.82), the variables may be separated and we arrive at a solution in the implicit
form

y
1 1-— 1 2 1
/ ydy _ 1 {m Yo ¥ FYFL (8.84)
11—y 3 11—y 2 yi+y+1
Yo
—V3 <arctan2( +1/2)farctani( +1/2)>} _
\/g Yy \/g Yo toa
D.
w<y=——=<1  gpo=——<1, t' = ZEANr (8.85)

After the substitution of the expression for the quantity A, we have

l=anN7V3 45" = Dol (ws/wm)?3 M3 . (8.86)

max"*

The parameter [ has the meaning of the average distance between the particles of the new
phase. N is determined via Eq. (8.65) and M.« via Eq. (8.81).
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8.5 Kinetic Equations and Thermodynamic Relationships 275

Equation (8.84) shows that, in the main part of the spectrum of new phase particles r (for
y < 1), the term 3> may be neglected in the denominator. This way, we get

t
Vi=u 2o, o=ty (8.87)
0

In the close vicinity of unity the relative size y exponentially goes with time to unity,
y — 1. Consequently, in the time interval {7 < ¢ < ¢y a distribution of new phase particles
is formed which represents the initial state for the late stage of the process, called coarsening
or Ostwald ripening (Chapter 4). The distribution function is given in the transient state, in
dependence on r, by Egs. (8.71) with a value of ry determined by Eq. (8.87). We get

Joro

f

= O(rmax () — 10)8(ro — 74). (8.88)
The parameter a is given by Eq. (8.56).

It follows from Eq. (8.87) that the range of cluster sizes Ar, which gives the basic contri-
bution to the new phase in the transient stage of the transformation, is significantly narrower
than the range of cluster sizes which is formed in the stage of steady-state nucleation and
which serves as the initial distribution in the transient state. Denoting the width of this initial
distribution by rmax(7n) — 74 = Arg, We may write

A — roArg rmaX(TN)A,rO < Ary. (8.89)

\/ 2r1211axt/t0 o Tmax(Tf)

In other words, the ratio of the widths of the intervals is determined by the ratio :“L((TTJ;’)),

where 75,5 1S determined by Egs. (8.66) and (8.83), respectively, for the both considered
cases.

8.5 Kinetic Equations and Thermodynamic Relationships
Accounting for Solute—Solute Interactions

The time evolution of an ensemble of clusters in nucleation—growth processes is usually de-
scribed in terms of the cluster-size distribution function f(n,¢). As shown in Section 8.2 (for
some additional detail see [293]), the evolution of the distribution f(n,t) of aggregates con-
sisting at time ¢ of n structural elements in the process of formation of a phase with a given
stoichiometric composition may be calculated by a Fokker—Planck type equation of the form

df(n,t) 0 df(n,t)  f(n,t) 0AP(n)
N {wn’nH[ on * kgT  On

on on

Hﬂfc(n,t), n>>1. (8.90)

As previously, the kinetic coefficient w, ,,11 describes here the probability that per unit time
a primary building unit is incorporated to an aggregate consisting initially of n such units. Its
specific form is determined by the mechanism of growth underlying the temporal evolution of
the cluster-size distribution and thermodynamic properties of the considered system.
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276 8 Formation of New Phase with a Given Stoichiometric Composition

In addition to earlier considerations, in Eq. (8.90) a “collision integral” term Y. is intro-
duced accounting for processes of touching and merging of the aggregates in the course of
the precipitation process. In the initial stages of the transformation process, the probability of
such collisions is small, at least, if the volume fraction of the solute is sufficiently low. There-
fore, as it has been done in the preceding sections, for the consideration of nucleation this
term may be neglected. It may have, however, a major impact on the late stages of the trans-
formation accounting, at least at part, for a deviation of the cluster-size distributions observed
experimentally from the original Lifshitz—Slezov theoretical predictions (cf. [59, 107,171]).

In contrast, the second additional term in the kinetic equation is of basic importance in
this stage being the only source for processes of formation of supercritical clusters. As will be
demonstrated below, its influence on the late stages of the process, however, ceases with time
though at intermediate times it may have also an important influence on the shape of the size
distribution [161].

To generalize earlier obtained results to precipitation processes in solid solutions both
the kinetic coefficients and the boundary conditions have to be reformulated. The respective
relations depend on the thermodynamic properties and the type of interaction between the
solute particles.

The Helmbholtz free energy F' and the chemical potentials p; of different components in
a solid solution, taking into account possible interactions between them, can be calculated
easily, if, as it is assumed commonly, only configurational contributions for the determination
of the entropy are taken into consideration. Generally we have

F=—kgTlhZ, (8.91)

E,
Z = Z exp (- kBT> , (8.92)

where kp is the Boltzmann constant, 7' the absolute temperature, Z the partition function
of the system, and E,, are the different values of the energy of the system in a canonical
ensemble.

With the above-mentioned assumption we may write, approximately,

Z= {eXp <—%> AT(T, V)} {exp (-%) AT(N, {n,»})}. (8.93)

Here Ey(S,V) is the thermodynamic (most probable value of the) energy of the matrix not
containing solute components, while AF(N, {n;}) is the correction term accounting for the
change of the energy if solute components are introduced into the solid solution.

The statistical weight AT is determined by the product of the respective quantities for the
pure matrix (AT'(T, V")) and the configurational part of the solute components (AT'(N, {n;})).
N is the total number of lattice sites where solute components may be introduced into the ma-
trix, and {n;} describes the set of solute components in the matrix. The thermal contributions
to the entropy depend only weakly on the concentration and distribution of solute particles in
the matrix, therefore, they can be neglected in the calculation of the chemical potentials.

The energy term AE(N, {n;}) may be written in a first approximation [144] as

AB(N, {ni}) = AEOWN, {nih) + 3 3 o (P24 (8.94)
ik
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8.5 Kinetic Equations and Thermodynamic Relationships 277

E©) (N, {n;}) denotes the energy contribution of the solute components taking into account
only solute—matrix interactions. The interactions between the solute components themselves
are described in a first approximation by the second term in Eq. (8.94).

The configurational statistical weight has the same value independent on whether the in-
teraction of the solute particles with each other is accounted for or not, it depends only on the
number of distributions of {n;} solute particles on N lattice sites in the matrix.

Equations (8.91)—(8.94) yield

1 n;n
_ ) 4 = ) itk
F=F +2%:@k( o ) (8.95)
OF
=g =+ Bc, (8.96)
T %
=" =i+ kpT e, (8.97)

Here F(©) and u§°> are the Helmholtz free energy and the chemical potential of the ¢th com-
ponent for the case that the segregating components do not interact with each other.
As aresult we get

i =i+ ksTlue + ) B (8.98)
k
or
Z Bikck
i = i kT ciexp | S | 5 (8.99)
where v; is the excess enthalpy of the ith solute component in the matrix.
Equation (8.99) indicates that it is reasonable to introduce the notation
Z Bikck
k
P =G e — 8.100
pi=ciexp | T ( )
resulting with Eq. (8.99) in
Wi = U + kT In ;. (8.101)

It it easily verified (cf. Eqgs. (8.97) and (8.101)) that the expression for the chemical po-
tential has the same form as for a weak (perfect) solution with the difference that the con-
centrations c; have to be replaced by the chemical activities ;. Moreover, in the outlined
approach, the chemical activities are well-defined quantities expressed through the interaction
parameters [3;;. A method of experimental determination of these parameters and thus of the
activities will be discussed somewhat later.
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278 8 Formation of New Phase with a Given Stoichiometric Composition

As a next step we consider the change A® of the Gibbs free energy ® connected with the
formation of an aggregate of a definite stoichiometric composition consisting of n structural
elements. We get [293]

2/3
Ad(n) = ( () — me) + 470 (i“’8> n?/3, (8.102)
/I

Here the following notations are introduced: M§°°> is the chemical potential of a structural

element of the aggregate; p; are the chemical potentials of the solute components in the solid
solution; o is the specific interfacial energy; and wj is the volume of one structural element of
the evolving phase.

Assuming that both the aggregate and the structural element are of spherical shape we
can introduce the radius R of the aggregate and the radius as of the structural element as
parameters. They are connected by the equations

4T . .
Wy = ?ﬂ-aj R = a.nt/3. (8.103)
The first of these equations may also be considered as the definition of the parameter a.
A derivation of Eq. (8.102) with respect to n yields

8A¢’(n) (c0) _ 871' 3(4)5 2/3 —1/3
— = o — . 104
o <us Zwl +5o () n (8.104)

By setting the derivative equal to zero, Eq. (8.104) may be used to determine either the equilib-
rium concentrations of different solute components (for a given value of n) or the critical size
n. of the aggregate (for given values of the solute concentration in the matrix). The resulting
equation reads

8 3w 2/3 _
S vipi =l + 5 (E) n; /3. (8.105)
With Eq. (8.101) we obtain
2/3
8 3w _
waz + kBTlnH ol =™ + o (%) no /3, (8.106)
™

If we introduce, in addition, the constant K. (p, T) of the chemical reaction equilibrium
for a bulk system (n;1/3 — 00) as

ple) — 2 viti

Koo(p,T) = exp kB—T (8.107)
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8.5 Kinetic Equations and Thermodynamic Relationships 279

and a similar relation for the respective equilibrium constant for the reaction taking place near
an aggregate consisting of n structural elements,

8 o 3w 2/3
Kn<p,T)Koo<p,T>exp{g<k7T)(4;> n1/3} (8.108)

then Eq. (8.106) may be rewritten as

» 8m o 3w 2/3 ~1/3
[1# = Keolp, T) exp ERVIARE Ne =Ky (p,T).  (8.109)

It follows that as a special case the equilibrium values of ¢; in the bulk (denoted as gogoo))

obey the following relation:
[1(+™) = Kulp. ). (8.110)

For given values of the quantities ¢;, Eq. (8.105) or (8.106) allow us to estimate the critical
number of structural elements in an aggregate as

20w
13 . 2% 8.111
e T kg TA @.110)

where the supersaturation A is determined by

i [T
_ Pi - i
Aln{H( W) }ln o) | (8.112)

g

By using the same notations we may also write

o
L M =—In L (8.113)
kgT on K,(p,T)
or applying Eqgs. (8.108) and (8.109)
1 0A®(n) K, .(p,T)
- = v — LLERS S it 8.114
kT On n ( Kn(pa T) ( :

8 o 3w 2/3 1 1
~ 3 \kgT) \ ar W3 pll3);

These expressions are needed in the subsequent derivations.
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280 8 Formation of New Phase with a Given Stoichiometric Composition

8.6 Rate of Change of the Number of Structural Elements
of an Aggregate of the New Phase

The flux of particles of the ith component to an aggregate of the new phase consisting of n
structural elements may be written, similarly to the case of precipitation of one solute compo-
nent in the matrix (cf. [293]), in the form of Eq. (8.13)

1 [0ADG)
2 .- = — —_— _—
4m R* j; Wy miis T ( o, ) . (8.115)

In this equation wy,, ,,, denotes the probability per unit time that particles of the ith compo-
nent are incorporated into an aggregate consisting of n structural elements (and characterized
sometimes also by a radius R(n)). This quantity may be expressed in the following way (see
Chapter 3 and [292]):

iD;\ (ATR?a,,¢;
Wnymrer = (O‘ )( a C) . (8.116)

a2, Wi

The parameter «;, as a sticking coefficient, describes the degree of inhibition of the diffusion
process in the immediate vicinity of the aggregate. It has values in the range 0 < o; < 1.

Here D; denotes the partial diffusion coefficient of the ith component in the immediate
vicinity of the aggregate, while a,, is the lattice constant of the matrix. With these notations
it becomes evident that the first part of the right-hand side of Eq. (8.116) (a; D;/a?,) has the
meaning of the frequency of jumps of particles of the ¢th component in the interfacial layer
near the aggregate in the direction of the aggregate. Hereby the total number of particles in the
surface layer can be written as (47 R%a,,, /w,,), where w,, is the average volume per particle
in the matrix. By multiplying this ratio with the concentration (molar fraction) ¢; of the ¢th
component in the surface layer we obtain the total number of particles of the ith component
in the layer. Consequently, wy,, »,,, has, indeed, the meaning as specified above.

In addition to the number of jumps, the diffusional fluxes to the surface of the aggregate
are determined by the change of the thermodynamic potential A®(®). Let n; be the number of
particles of the ith component in an aggregate of size n. A®(®) is the change of the thermody-
namic potential, resulting from the transfer all particles n; of different components required
for the formation of an aggregate of size n from the solution with values of the concentration
¢; to a solid state for which an aggregate of size n is in equilibrium with the surrounding solu-
tion. The chemical potential of the ith component, being in thermodynamic equilibrium with
an aggregate of size n, we denote by 1;(¢cy;), by cy; the respective values of the equilibrium
concentrations of the components in the matrix are specified. As will be shown later, a deter-
mination of these concentrations, although possible, is not necessary for a formulation of the
kinetic equations describing nucleation and growth.

To distinguish such a type of change of the characteristic thermodynamic potential from
the change due to the formation of an aggregate of size n the superscript (s) in A®®) is
introduced. According to the given definition, A®(*) may be written as

AP = an [pi(eni) — pi(&)] pls) = me(cm)- (8.117)
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8.6  Rate of Change of Structural Elements in an Aggregate 281

A derivation of Eq. (8.117) with respect to n; yields

OAD()
( o ) = = [pi(&) — pi(eni)] (8.118)
and after a substitution into Eq. (8.115) we obtain (as in Eq. (8.109))
3a;D;8; ((ws \? i (&) — pi(cni)
4 R2 .i: 11 Ws 2/3 1\t 1\"ne ) 8119
g a2, (wm> " kT ( )
In the derivation of Eq. (8.119), in addition, the relations
47 R3 47 o
- = 8.120
"TE e YmTgm (8.120)

were applied. w; is the volume per primary building unit in the segregating phase.
The rate of change of the number n of structural elements may then be written as

d 47TR22wiji

n N

_—=— 8.121
dt W ( )

Here the parameters w; denote the volume of a particle of the ith component in an aggregate
of the newly evolving phase.

In application of Eq. (8.121) to the description of the process of formation and growth
of aggregates of stoichiometric composition it has to be taken into account that the different
fluxes are connected by the additional condition

ho_J2_ . _ 2 (8.122)
vy 2 Vi
where v; denotes the molar fractions of different components in the newly evolving phase. Fol-
lowing the derivation of the aggregate growth rate, dn/d¢ presented in Section 8.2 (Egs. (8.16)
and (8.17)), we obtain formally the same expression

dn  3n2/3 [ w, 2/3 1 i () — pi(cni)
&t @ (wm) Z( 2 ) Zu ( knT ) : (8.123)

K3
a;D;¢;

However, the chemical potentials in Eq. (8.123), unlike Eq. (8.17), account already for the
solute—solute interactions. Thus introducing the notation

L 3 v (8.124)
D+ - 7 OéiDiéi :
and using the following identities (cf. Egs. (8.101) and (8.109)):
[lp:()]"
NJZ Cz /M an ) _ 7
Z e Z% ( m)> =In Rk (8.125)
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282 8 Formation of New Phase with a Given Stoichiometric Composition

we finally get

%,2/3 2/3 H[‘Pz(éz)]w
dn ?’Din(”“’) In [+ (8.126)

dat a2, Wi K,
For the rate of change of the number of structural elements we may write alternatively an

expression similar to Eq. (8.115) as

dn 1 OAD
v(n) TR*j Wh,nt1 T ( o ), 8 )

dt
where A® is determined by Eq. (8.102). With Eq. (8.113) we may rewrite this relation in the
form

dn [lpi(E:)]"

5 = Wnnt1ln £ . (8.128)

Ky

A comparison between Eqgs. (8.128) and (8.126) shows that the rate coefficient w;, 41
may be written as

(8.129)

wn,n+1 ==

3D*n2/3 [ w, 2/3
az, < Wm ) .
In this way, the coefficients w,, 5,11 required for an application of Eq. (8.90) are determined.
However, in Eq. (8.128) the activities ¢; = ¢;(¢;) occur which have to be replaced later on by
the known average activities ;(c;) of the matrix. This replacement will lead to some further
revision of the expression for wy, 4.

Moreover, as is evident from Eq. (8.124) the effective diffusion coefficient D* is a func-
tion of the concentration and depends, therefore, also on the interactions between the solute
components. Therefore, as a next step, these dependences have to be specified and expressed
through the interaction parameters [3;y.

8.7 The Coefficient of Components Mass Transfer

Taking into account the interaction between the solute particles the partial diffusion coeffi-
cients D; depend on the concentration of different components {c;}. This dependence is
weak for the prefactor D;g in Eq. (8.130)

D; = Djpexp (— kiT> , (8.130)

but may be of significant importance with respect to the activation energy @); of the diffusion
process.
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8.7 The Coefficient of Components Mass Transfer 283

This activation energy may be written as a sum of two terms, the first accounting for the
contribution only due to solute—matrix interactions (Q;(0)), while the second (AQ;({c;}))
reflects solute—solute interactions, i.c.,

Qi({cj}) = Qi(0) + AQi({c)})- (8.131)

Note that the solute—solute interaction is of significance only for distances not exceeding sev-
eral times the respective lattice constants. Moreover, it is evident that the activation energy
of the diffusion increases (AQ); > 0) if the solute particles attract each other and decreases
(AQ); < 0) if the interaction leads effectively to a repulsion of the dissolved components. If
the different solute particles have nearly the same size as the matrix building units (for the case
they are occupying vacant lattice nodes) or if they are sufficiently small (occupying interstitial
positions) then the solute interaction changes exclusively the potential well for the positions
where the solute particles are bound to the lattice without changing the general shape of the
energy relief.

The change of the activation energy is given for such cases by the energy of interaction of
the solute particles as

AQi == Bk (8.132)
k

resulting in

Qi({c;}) Z Bikcr.- (8.133)

The partial diffusion coefficient of the ith component may be then written in the form

Qi(0) = X" Binck

D;({¢;}) = Digexp —kB—éi . (8.134)

For an application of the equations describing nucleation and growth of a stoichiometric
multicomponent phase not the partial diffusion coefficients themselves but the so-called coeffi-
cients of mass transfer D;c; have to be known (cf. Eq. (8.124)). Denoting the partial diffusion

coefficient in the absence of solute—solute interactions by Dgo) we obtain from Eq. (8.134)

" > Birer

k
Di({ej})ei = D;Veiexp T (8.135)
or (cf. Eq. (8.100))

D;i({c;}es = DV, (8.136)
This result allows us to rewrite Eq. (8.124) as

1 V2
B = Z S R— (8.137)

(673 DZ(O) (pz

i
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284 8 Formation of New Phase with a Given Stoichiometric Composition

In this way, it turns out that the effective diffusion coefficient is, again, determined by the
values of the chemical activities of different components ;.
With Eq. (8.136) the relation for the density of fluxes of particles of the ¢th component

Djc;

 kgT

Ji = gradyi; (8.138)

may be transformed easily into
ji = —D{”gradg;. (8.139)

It turns out that the only modification, one has to introduce into the relations for the description
of nucleation and growth for perfect solutions, derived in [293], consists in a replacement
C; — Py

In the case of kinetically limited growth the concentrations (or activities) in the immediate
vicinity of the evolving cluster are equal to the average concentrations ¢; (average activities
;) in the matrix. Taking this into account we obtain from Eqgs. (8.124), (8.126), and (8.136)
for kinetically limited growth

3D* 2/3 < 2/3 1 2
Wiy = 220 (w_) , L (8.140)

a2, Wi D+ - OéiDgo)Lpi

By the method outlined in [293], we obtain for the general case

<47TR) D*D**

Wnpn+1 = a 5

Wm (D*+D** m)
R

(8.141)

=Y g
Dr i O‘iDz(O)SZi D= i DEO)@
In this general case, the chemical activities at the boundary of the aggregate ¢; have to be
expressed through the average (i) and equilibrium (for a cluster of size n, (¢,;)) chemical
activities via Egs. (8.110), (8.122), and (8.139) resulting in [293]

w(am)ﬂo (ens)
5 = — Nl : (8.142)

am,
1
* <aiR>

For diffusion-limited growth, prevailing for large values of the cluster size R, Eq. (8.141) is
reduced to

Whpt1 = 5 (8.143)
Wm ay, Wm

4rRD**  3D**n!/3 (ws )1/3
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8.8 Steady-State Nucleation Rate 285

In all considered cases, the rate of deterministic growth of a cluster of size n may be deter-
mined from the expressions for w,, ,4+1 via an equation of the form as Eq. (8.128), where,
however, ©;(¢;) = @; has to be replaced by ¢;(c;), i.e.,

dn [Tlpi(ei)]”

E = 'UJn’n_A'_l ln ZT . (8144)

In this way, the determination of the kinetic coefficients w,, 1 and the deterministic growth
rates is finally accomplished.

8.8 Steady-State Nucleation Rate

In order to solve the kinetic equation for the evolution of the cluster-size distribution, the
boundary conditions for n — 0 and n — oo have to be specified. If we express f(n,t) in the
form

Ad
Fln) = wim)exp (- 22 (8.145)
kpT
the physically reasonable boundary condition for large values of n is (compare [293])
lim ¥(n) =0, (8.146)

while for n — 0 and noninteracting solute particles

lim ¥(n = H ¢ (8.147)

n—0

was shown to hold. Here z is the number of lattice sites in the matrix occupied by the particles
forming one structural element, N, as mentioned, is the total number of lattice sites in the
volume V.

While the boundary condition (8.146) remains unchanged, Eq. (8.147) has to be modified
accounting for the change of the number of possible configurations (the change of entropy)
due to the interactions between the solute components. Instead of Eq. (8.147) we then get

(int)
lim ¥(n Hc”‘ exp <AS ) ) (8.148)

n—0

The entropy difference AS() can be expressed through the work (with a minus sign)
required in a reversible process to transfer different particles constituting a structural element
of the new phase into the pretransition state or, equivalently, through the differences in the
chemical potentials as

TAS(int) - _ Z v, [Hginterface) — il (8.149)
\\V\'\V\\'.i|'L\|17|]1L\V"1LLC()n1
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286 8 Formation of New Phase with a Given Stoichiometric Composition

In Eq. (8.149), u{"™*"™%) denotes the values of the chemical potentials of different interacting
solute components in a group of molecules in the interfacial region capable to be incorporated
into the aggregate of the newly evolving phase, while 1;, as introduced with Eq. (8.98), refers
to the respective values in the bulk of the matrix. Denoting further by ¢ the energy of in-
teractions of the group of molecules in the pretransition state which differs, in general, from

the value > v; ;¢ for a random distribution of the same solute components in the bulk,
ik
Eq. (8.149) may be rewritten in the form

TAS) — <€ - Z Viﬂik%) . (8.150)

ik
Substituting Eq. (8.150) into Eq. (8.148) yields
N € — > Vifikck
. v; ik
lim W(n) = W Hc exp | ——— (8.151)

and with Egs. (8.96) and (8.98)
Z Bikck .

>Hci”*H exp —kkT (8.152)

%

. N
7{% U(n) = sy &P (—

€
kT
or (cf. Eq. (8.100))

. N
7131)1}) U(n) = Sy &P (

€
vi 8.153
kBT) H #i (8.153)
is obtained.
Once the kinetic coefficients w,, ,1 and the boundary conditions are known the Fokker—

Planck equation can be solved and the steady-state nucleation rate J can be determined (for
details see [293]). Taking into account the interactions of the solute components we get

N € Vi Ad(n,)
J = v exp <_/€B—T> Wy 41 (1) 1:[% exp (_763771)

S

On substituting the respective values for the kinetic coefficient wy, 41 for n = n. (denoted
by Wy, n+1(n)) and the expressions for the derivatives of the thermodynamic potential with
respect to n we obtain

N € 2D*a ws V2 o
J=|—=]exp|— I > a — (8.155)
<ZV) P < kBT) 1:[@ ( agn ) (w"ﬂ) kT
4 3w, \?
X exp {—% (é) < Z;T > ni/ 3} — for kinetically limited growth,
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N 5 o [ 2D**ay Ws /3 o
1= () (e T () (2) Ve w0

4 o 3w,y \/?
= s 2/3 _ S TR
X exp { 3 ( k T) < 1 ) n. } for diffusion-limited growth.

Taking into account Eq. (8.141) for nucleation processes in solid solutions usually Eq. (8.155)
should be applied.

The time required for the establishment of the steady-state nucleation rate may be approx-
imated, again, by

A 2
N G (8.157)
Wn n+1 (nc)
while the condition that a constant nucleation rate is found may be written as
An)? A
(An)” _ An (8.158)
wn,nJrl Ne

Here An characterizes the region in the space of structural elements near the critical cluster
size n., where the growth of the aggregates proceeds mainly by diffusion-like processes. This
interval is given by (cf. [293])

2/3
An = ! —<3Z ) kT (8.159)
Qs o
1 O2AD(n)
on? —

2kpT

The time interval At in Eq. (8.157) is, however, equal to the mean time of growth of an
aggregate from subcritical (n = n. — An) to supercritical (n = n. + An) size by diffusional
motion in cluster-size space. Equation (8.158) implies that during this time interval the critical
cluster size does not change appreciably.

The account of solute—solute interactions in the description of precipitation processes al-
lows one in addition to the extension of the region of applicability of the theory also a determi-
nation of the interaction parameters for a given solid solution by investigations of the course
of precipitation processes in it. In the simplest approach, hereby the quantities [3;;, may be
considered as parameters which have to be determined in such a way as to allow one the best
fit of the experimental results.

It is also possible, however, to obtain some additional information by varying the concen-
trations ¢; of different components. Considering the process of precipitation, e.g., of only the
ith component one obtains from Eq. (8.98) for a weak solution and an equilibrium coexistence
of the pure ith phase with the matrix

i =t — kpTn ™ (8.160)

i
allowing one to determine 1; and ugs) from a set of measurements by varying the temperature.
Similarly also additional parameters may be determined by varying the number of components
and their concentration in the system.
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288 8 Formation of New Phase with a Given Stoichiometric Composition

8.9 Influence of Interaction of the Solute Components on
Coarsening Processes

In the case when the inequality, Eq. (8.158), already does not hold, the precipitation pro-
cess goes over into the late stages which have been studied extensively (cf. Chapter 4
and [155, 341]). In the late stage of precipitation the activities (or concentrations) of dif-
ferent components in the matrix remain nearly constant. Next, although the parameters in the
kinetic coefficients, respectively, the deterministic growth equations are complicated functions
of the composition, the kinetic equations governing the evolution of the cluster-size distribu-
tion function is of the same form as for the case of a perfect solution. Here the same situation
is found as for the case of precipitation of only one component in the matrix (see Chapter 4).
Introducing the reduced variables

w= <") 71n<"5> (8.161)
Ne Uz

and the cluster-size distribution function ¢(u, 7) in reduced variables

(u,7) = f(n,t)n. (8.162)

the Fokker—Planck equation may be written for kinetically limited growth again in the form
(for details see Chapter 4 and [295])

op 9 9 d
8—f + 5 {orut@® = 1) —u] 0} - (ng;{l) e [uz/?’a—i] =Y., (8163)
T.= i—% /¢(u — ', 7)Qu — ' u) (v, ) du’ (8.164)
‘ 0

- ¢(u,7)/ﬂ(u, u)o(u', ) du, Te ~ 1 Qu,u’) ~u+ ',
0

) an? L8 (o 3w \2 1 3D [w, P
T =— =— |- = .
o To Me 3 \kgT Am " a2, \wm

For the considered here case of kinetically limited growth the critical cluster radius be-
haves for large times as R, oc t'/2. It turns out that in intermediate stages of the process (in
the initial stages of coarsening) diffusion processes in cluster-size space (stochastic effects,
thermal noise) are of significance for the kinetics of coarsening including the shape of the
cluster-size distribution function (cf. also [161, 171]). With time such effects become less
important. However, processes of touching and merging of aggregates gain in importance for
sufficiently large volume fractions of the segregating phase in the transition from nucleation to
coarsening and may influence the shape of the cluster-size distribution function significantly
(cf. also [59]).
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8.10 Discussion and Conclusion 289

For diffusion-limited growth the collision integral retains the same form as for kinetically
limited growth. The Fokker—Planck equation reads, now,

9% 9 1/3 1y _ () 9 [ 1/309] _

5 5a O =D -] o} ) au | B = T (8.165)
a 8t ([ o\ (3ws\'? 1 3D [w, '

= ma T <k3T> < dm ) B (wm) ' (8:160)

The conclusions remain qualitatively the same as for kinetically limited growth.

8.10 Discussion and Conclusion

The present chapter is devoted to the description of the course of the evolution of a phase trans-
formation process encompassing both the quasisteady-state nucleation stage and the transient
stage to coarsening in a multicomponent solid solution taking into account solute—solute in-
teractions. A new approach to the theoretical treatment of this problem is proposed and a
complete set of equations is formulated describing this process. The expression for the effec-
tive diffusion coefficient is derived, which determines the flux of structural units of the new
phase through the boundaries of the aggregates of the newly evolving phase. This coefficient
can be written as a combination of the partial diffusion coefficients of different components in
the solid solution.

All the basic characteristics of the phase transformation process are determined analyt-
ically including the following: the distribution function of particles with respect to clus-
ter size, the cluster flux in size space, the maximal number of new phase particles, and
estimates of the duration of different stages of the process. Numerical solutions of the
basic kinetic equations show an excellent agreement with the results of the theory (see
[22,94,114,164,178,196,245,247,350] and Figure 8.1).

The degree of dispersity of the system is shown to grow essentially in the initial nucleation
stage of the process of phase separation. However, at the transient stage, the width of the
distribution with respect to cluster sizes is reduced, but increases again at the later stage,
approaching (in reduced variables) a constant value (see Chapter 4). These results allow one to
vary the dispersity of the evolving phase by terminating the phase separation at some definite
stage of the process.

In addition, the analytic expressions can be utilized for the determination of the interfacial
free energy (which can hardly be measured otherwise) by comparing the theoretical results
with experimental data. Of course, one has to be sure that the process is dominated, as assumed
here, by homogeneous nucleation.

The proposed theory can be applied to a description of phase transitions in liquids as
well as for the case of droplet formation with a given stoichiometric composition. Also, in
the present chapter the influence of interactions between solute particles in multicomponent
solid solutions on processes of formation and growth of phases with a given stoichiometric
composition is investigated. The analysis is carried out based on a newly developed general
method of treating nucleation and a particular (but rather general) good enough approximation
for the description of the interactions of the solute components.
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Figure 8.1: Evolution of the cluster-size distribution function, f(n,7), for different stages of the pro-
cess: (a) Establishment of a quasisteady state for the range of cluster sizes n < n. (for 7 < 7, in the
stage of nonsteady state nucleation (left top); (b) Evolution in the stage of quasisteady-state nucleation
(right top); (c) Evolution in the transient stage to coarsening (left bottom); (d) Evolution in the late stage
of coarsening (right bottom).

It turns out that the basic kinetic equations remain of the same form as for the case of
weak (perfect) solutions. However, the kinetic and thermodynamic parameters are compli-
cated functions of the composition of the system and the interaction parameters. In this way,
the outlined theory gives the possibility of an adequate quantitative interpretation of experi-
mental results on segregation processes in concentrated multicomponent solutions.

The outlined approach also allows one a straightforward extension to cases, when elastic
effects, the influence of radiation on phase formation or other external factors have to be taken
into account. Moreover, it gives also the basis for a treatment of the general problem of phase
formation under the condition that the monomeric building units of the evolving phase interact
with each other in nucleation and growth.
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9 Nucleation and Growth of Gas-Filled Bubbles in Liquids

9.1 Introduction

The process of formation of bubbles in a solution supersaturated with a gas is an example of a
multicomponent phase transition of large practical importance, for example, it determines ma-
jor parts of the technology of formation of polymeric foams. In contrast to the cases analyzed
here earlier it results in further complications in the theoretical description since the density
of the aggregates of the newly evolving phase, the bubbles, is in general not known and has to
be determined as well. This property results in the existence of additional degrees of freedom
in the description of the cluster properties, which have to be appropriately accounted for.

For the case when the heat conductivity of the solution is sufficiently high, the temperature
of a bubble does not differ from that of the solution and the evaporation of the liquid into the
bubble can be neglected. The process can then be characterized by the bubble radius and
the number of gas atoms in the bubble and a particular consideration of the evolution of the
temperature of the bubbles is not required.

As we know from the preceding chapters, processes of phase transitions can be subdivided
in a variety of different applications into three stages. Such division holds for the case of
bubble formation and growth as well. At the nucleation stage, bubbles with sizes larger than
the critical size are formed. In view of a strong dependence of the nucleation rate on the
supersaturation level, this stage is characterized by almost time-independent conditions and is
terminated by the formation of a spectrum of the finite-size particles (bubbles) of a new phase.

At the second stage, new bubbles are virtually not formed, nucleated earlier supercritical
bubbles grow, and the supersaturation decreases substantially. At the third (final) stage, when
the supersaturation of the solution almost vanishes, the part of bubbles with subcritical sizes
dissolves and supplies the substance (gas) for the growth of supercritical bubbles. In this case,
the total amount of gas in the bubbles is conserved, their mean size increases, but the number
of bubbles decreases.

The kinetics of multicomponent nucleation was first theoretically treated by Reiss [206]
who assumed that, in composition space, the flux of the clusters to the new phase passes the
saddle point of the characteristic thermodynamic potential. Later, this idea was elaborated
in a number of works (e.g., see [132,318]). Thus, the problem becomes efficiently one di-
mensional, because the particle size is completely determined by the position of the saddle
point (cf. Chapter 9 and Section 3.8). Such scenario can be considered as the rule, but ex-
ceptions from this general rule are possible as well (see, e.g., [130, 152, 328, 356]). Such
exceptions correspond to situations when the main flux to the new phase passes not the saddle
but some ridge point of the thermodynamic potential. General expectations and detailed anal-
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292 9 Nucleation and Growth of Gas-Filled Bubbles in Liquids

ysis [168,219] allow us to conclude that ridge crossing will be the preferred channel of the
transformation in the case of significant excess of one of the components in the solution and
when the thermodynamic barrier is relatively low.

In [138, 176], the nucleation of gas-filled bubbles in a viscous liquid was studied, and the
diffusion regime of their growth was considered. For the case of boiling-up of gas dissolved in
low-viscosity liquids in [142] the kinetic equations for homogeneous nucleation were derived
and the general regime of bubble growth was discussed. This regime includes both the diffu-
sion regime treated in [138,176] and free molecular regime, both being considered as limiting
cases. The bottleneck of the molecular regime is the boundary kinetics of the addition of gas
molecules to the bubble. Subsequent growth of supercritical bubbles was discussed with the
account of solvent fugacity in [143].

This chapter is devoted to the study of all three successive stages of the process of the
nucleation [313] and growth [314] of gas-filled bubbles in low-viscosity liquids. Note that
metal melts can also be considered as low-viscosity liquids within a rather wide temperature
range; hence, such an approximation has fairly wide applications. The method employed here
makes it possible to determine the main parameters (the rate of bubble growth, characteristic
times, and the total volume of supercritical bubbles), and the bubble-size distribution function
at all stages of the process.

Nucleation and the growth of supercritical bubbles in high-viscosity liquids were studied
in [310], and will not be discussed here in detail.

9.2 Nucleation in a Low-Viscosity Liquid

9.2.1 Reduced Equations Describing the Process of Bubble Nucleation

As arule, both the liquid and the gas in a bubble in the process of bubble nucleation in a liquid
can be considered as being in a local thermodynamic equilibrium, whereas the system as a
whole is in a nonequilibrium state. Therefore, to describe the nucleation process, it is con-
venient to introduce the free energy that determines the corresponding fluctuations under the
conditions of thermodynamic equilibrium. Upon the nucleation of a bubble in the metastable
medium, its variation AF(V, N) is defined by the expression [308-310,313,314]

AF(V,N) =V —p") + N(u" — p*) + 47 R%0. ©.1)

Here, V, R, and N are the volume, radius of a bubble, and the number of gas molecules in
the bubble, respectively; p¥" and p’ are the pressures in the bubble and the liquid after its
transition to the metastable state, respectively; u” = p” (p(n’),T') and " are the chemical
potentials of the gas atom in a liquid and in a bubble, respectively; p(n’) is the external
saturating gas pressure, i.e., the pressure at which the gas in the bubble with a size of R is in
equilibrium with the gas dissolved in a liquid with density n”; and o is the surface tension
of the liquid. Variables describing the bubble are regarded as continuous so that (1/N) < 1.
At the range where this ratio is of the order of unity, the calculation accuracy for the averages
will be quite adequate, provided that the range of their variation is rather wide (for the case in
question, it is sufficient that the amount of gas in a critical bubble is large, N, > 1).
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9.2 Nucleation in a Low-Viscosity Liquid 293

Differentiating AF with respect to N at constant volume and taking into account that
N(0uY [0p¥)|;_..y = Nw = V (w is the volume per gas molecule in the bubble), we
obtain

OAF v
= = — 9.2
ON V=const : . ( )
and similarly
OAF I v 20
= =l _ - 9.3
ov N=const b P - R ( )

The parameters of the equilibrium bubble (R, N.) are found from the extremum of AF'.
From Eq. (9.3), we obtain

20

\% L

=p" + —. 9.4
=P 9-4)
This expression determines the pressure in a bubble with a size R, which is in mechanical
equilibrium with the liquid at pressure p”. From Eq. (9.2), it follows

p¥ (p",T) = pu" (p,T). 9.5)

Since p = p (nL) is the external (saturating) pressure of the gas, which is in equilibrium
with the gas dissolved in a liquid with density n”, the chemical potential of the gas in the
liquid can be replaced on the right-hand side of Eq. (9.5) by the equal chemical potential of
the saturating gas. Assuming that p¥" and p (n”) are rather small (< 107 Pa) and using the
equation of state for the ideal gas with constant heat capacity (u = kT Inp + x (T), kp is
Boltzmann’s constant), we obtain from Eq. (9.5)

pV \% L
In|——| =0, p- =p(n-). 9.6)
Lo (n) ] (%)
Thus, the critical size R of the bubble containing N, gas atoms is determined from Eqgs. (9.4)
and (9.6)

4 —1
p¥V = N.kpT (%Rf) =p(nh). 9.7)

As a rule, the critical size at the nucleation stage is fairly small; then, p” < p (nL ) /2
20 /R, and

20 20 20
R, = - ~ , 9.8
pV —pt  p(nl)—pl  p(nk) 08
N.kgT
pV — cVB =p (TLL) ,

9.9)

N (i p 20\ Ve 20 Ve _8mo R
= \P Rc kBTNRckBT_ 3 k‘BT
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294 9 Nucleation and Growth of Gas-Filled Bubbles in Liquids

Hereafter, we assume that for the gas dissolved in a liquid Henry’s law is fulfilled, which
is applicable within a wide range of parameters

Loy O Loy s G
W) = Tompln (1) = 50, 9.10)
nk =nl(c0) = kBLT b (n*(c0)) = ong, 9.11)

where § is the solubility parameter, n” = n” (t), n* (0) is the initial gas density, n< is the

saturating gas density equal to the density of the gas in the ambient space (we suppose that the
gas in a liquid is distributed homogeneously; it is true in the case when the metastable state is
created quickly as compared to the time interval before the start of nucleation [308]) and n¢&
corresponds to the gas equilibrium density nl at the pressure p*(n%) = p’ in a liquid.

As was shown in [310], depending on the value of the parameters, one can distinguish
between two limiting cases: the case of boiling of a high-viscosity liquid where the amount of
gas in a bubble is adjusted to its volume and a low-viscosity liquid where the bubble volume
is determined by the amount of gas in a bubble. The first case is realized upon the fulfillment
of inequality 7, < 7g [310], where 7, = 2IR (35D)_1 is the characteristic time of filling
the bubble with the gas, T = 47 (SpL + 80/ R)fl is the characteristic time of bubble size
variations, D is the diffusion coefficient for gas atoms in the liquid, [ is the length of an
elementary displacement (of the order of the distance between atoms in a liquid), and 7 is the
liquid viscosity.

In the case of a low-viscosity liquid, the inverse inequality is valid

T, > TR. 9.12)

On the adjustment of the bubble size R = R (N) to the amount of gas in the bubble, we get
the mechanical equilibrium for the virtually entire spectrum of sizes where the condition

20
% L
= - 9.13
p=p'+ 5 9.13)
is fulfilled.

According to Eq. (9.6), N = 8taR? (N) /3 (for N, Eq. (9.9) is valid). Substituting the
condition (9.4) into Eq. (9.1), we find

2 4
AF(V,N) =N |u¥ (p" + EU,T) — | + TR, 9.14)

After the adjustment, Eq. (9.3) is retained with the account of dp¥' /OR = —20/R? and
0" JopY = w. As aresult, we get

|4
p 1
AF = AF N),N)=NkgTln—— + —NkgT
V) (V(N),N) B np(nL)+2 B
(9.15)
NkgT . N, 1
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9.2 Nucleation in a Low-Viscosity Liquid 295

The bubble volume V(N) = 47 R3/3 is unambiguously determined by the number of gas
atoms in the bubble using the equation of state of the gas and Eq. (9.13). Thus, for the ideal
gas, we obtain

-1
V (N) = NkgT (pL + %U) ) 9.16)

The bubble-size distribution function in a low-viscosity liquid can be represented using
Eq. (9.15)

F(N,V,t) =9 (N,t)6 (V —V(N)). 9.17)

After integration of the general equation with respect to the adjusting variable V/, the reduced
distribution function v (IV, t) satisfies the equation

oy aJ

- =5 9.18

ot N ©-18)
with the boundary conditions

YN,y =0t D(N,0)]ys =0, 9.19)

where the flux J in the space of gas atom number in the bubble is determined by the following
equation (cf. Egs. (3.5)-(3.7)):

J = —D(N) <15AF1// W’) .

ksT ON (9.20)

Here, D(N) = w ~,~N+1 is the diffusion coefficient of bubbles in the space of the number of
gas particles in the bubble or the probability of absorption of one atom by the bubble from the
solution per unit time [308]. The first and the second terms in the brackets of Eq. (9.20) are,
respectively, the thermodynamic and the diffusion flow rates in the space of numbers of gas
atoms in the bubbles, N. At the initial stage of bubble nucleation with the gas when there are
still no diffusion clouds around the bubbles [308], the rate of filling the bubble with the gas
has the form

dN 1 OAF _ (D\ . .

where « is the coefficient accounting for the additional barrier, which can exist for the last
jump of gas atoms into the bubble, 0 < o« < 1. From Eq. (9.15), we also find

1 AF 1. N,
—— —— = _In—=. 9.22
ksTON 2 N ©22)
Using Eq. (9.17), we obtain the law of conservation of the total amount of gas in the
system [308]
—1 0o

nP(0) —nf(t) = |1 —/V P(N,t)dN /Nz/;(N,t) dN. (9.23)
0
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296 9 Nucleation and Growth of Gas-Filled Bubbles in Liquids

Here, n” (0) = ny is the initial density of the gas dissolved in the liquid; the expression
in square brackets on the right-hand side of Eq. (9.23) accounts for an increase in the total
volume of a system due to bubble growth.

Equation (9.18), together with the law of conservation of the total amount of gas in a
system (Eq. (9.23)), represents the total set of equations describing the nucleation of bubbles
with gas in a low-viscosity liquid.

9.2.2 Time of Establishment of Steady-State Nucleation

At the instantaneous transition of a system into the metastable state, the flow of critically sized
nuclei emerges and the quasisteady-state regime is established after a certain time lag ?1,5. Let
us estimate this time.

By the conditions determining the parameters of the critical bubbles, the first derivatives
of the thermodynamic potential with respect to N and R are equal to zero. This makes it
possible to find the bubble size R. and the amount of gas in the bubble, N.. From Eq. (9.9),
we obtain p"’ ‘R:RC = p(nt(t)); then

20
L?

R, =——"2
p(nt) —p

(9.24)

where p” is the pressure in a liquid corresponding to the equilibrium density of the dissolved
gas nl = 6p /kpT.

For the transition stage, where the metastability of the system decreases substantially but
is still rather high, we have

R 20 _ 20 _ 209 L, 1
T p  kpTnl  kgTnL(0)1—Z(t) ~C1-Z(t)
(9.25)
L L L L
n :n(O) n-(0)+n 120,
nt(0) nl(0)

where Z (t) = [n"(0) — n’(t)] /n*(0) is the relative (per unit volume) number of gas atoms
in the bubbles. Taking into account that, as a rule, for subcritical bubbles, the case pL < 20/R
is realized, from the equation of state, we obtain

N = kBLT [pLV—I— %ﬂazﬂ ~ %IW;LTRQ, (9.26)
N, = k%T {pLVC + %%Ri] ~ %FIQ;LTRz, (9.27)
%:g—; %:%, (9.28)
R? = REOJ\%, Ny = "%?VCO. (9.29)
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9.2 Nucleation in a Low-Viscosity Liquid 297

The use of Eq. (9.25) yields

N, _
o =a-zer”. ©30)

Here, V.o = 47R2,/3 is the volume of a critical bubble where the pressure is equal to the
saturation pressure of the dissolved gas at the initial moment, p (nL (0)) and N is the amount
of gas in the critical bubble at the initial moment. Then, we have

nt(0)Z (t) = / Nv(N,t)dN. 9.31)
0

Let us write the expression for the diffusion coefficient D(N) (Eq. (9.21)) as
3D r 5 o N 1

D(N) = aom— 1—Z()==-N1-2Z(t 9.32
(N) = agrp——g Reon™ (0) 17— (#) = 2N ( (1)), (9.32)
where
2[Ry
*7 3aDs’ (9.33)
When deriving this relation, we used the Henry law (Eq. (9.10)) and the equality
4 . L g
iRﬁonL (0) — M(; = No9. (9.34)
3 kpT

Using Eqgs. (9.22), (9.28), and (9.32), we can write Eq. (9.21) in the following form:

dN 1 N
— =—N{1-2)In— .35
a2t ( )In A (9.35)
or, with account of Eq. (9.30), as
dN N N 1
—=N(1-2Z In—=N({1-2 In—+2ln—— .
=N ZEO)n g =N 20) [ 2 | 036)
where
t 9.37)
T = —. .
2to
With the notation y = N/N,, Eq. (9.18) gets the form
oY 0 2 Oy
= 2y =l — ). 9.38
g ayy( wny+Ncay> (9.38)

For the range of subcritical nuclei, 2 < N < N, itis convenient to introduce the variables
z=InN, ¢ =Ny=e". (9.39)
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298 9 Nucleation and Growth of Gas-Filled Bubbles in Liquids
Then

N
Iny=1In (E) = — T, (9.40)

and Eq. (9.37) is transformed into

@w 32¢ 8w ~ - _ L
o ba 3 Tag ¥ —dy, Gl (9.41)
where
_ 1 _ 1 _
b=e", azE(xc—a:)—4er>0, d=§(1—2e ) > 0. (9.42)

At variable coefficients a, b, and d, Eq. (9.41) cannot be solved exactly. However, taking
into account the constant signs of these coefficients, let us estimate the upper limit of Tj,g.
Assuming that the coefficients are constant, we get the exact solution of this equation. Using
the substitution

2
~ a
= p(x,T)exp {— (d—i— 4b> T:| exp {—Q—bgc} , (9.43)
we obtain
8p(:ﬂ,7) _ 82]9(35‘,7') _ L a2
5 = b 92 p(x,T)|,_og =n"exp |— (d+ m T, (9.44)

~ x r x? a? /
NdJZTZ):nL\/T—b/eXp (4()(7__7_,)) exp{ <d+4b> (77)} (9.45)
0

dr’

X (1 —71)3/2

~1
Let us introduce the variable £ = x (2 b(r — 7' )) instead of 7/, then we get

dent— [ e (———5 ) da, (9.46)
(2br) -1
where
CL2 x2
<d+ 4b> s (9.47)

The integrand in Eq. (9.46) has a sharp maximum at {yax = o/%. If this maximum

fits the integration domain, 1) is virtually independent of 7 that corresponds to the quasista-
tionary state. Then, we derive the equation for the time of establishment of such state, 7i,g,
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9.2 Nucleation in a Low-Viscosity Liquid 299

equating (9.47) to the lower integration limit in Eq. (9.46) at 7 = 7,4

2 2
AN Vo S R b 9.48
e ¢ T vmV T ©48)
thus arriving at
_ x (9.49)

Tla .
e J1db + a2

The parameters a, b, and d are functions of N and N.. Let us estimate the maximal time
Tlag; t0 do so, we substitute the minimal values ayin = 0, byin = €7%¢ = Nc_l, d=1/2,and
r = x. and get

NCO
Tag < V/ Negln —, 9.50
lag > 0 \/i ( )
and for the dimensional time
NcO 2 ch NcO
tiae < tov/Noln — = — —+1/Nogln ——. 9.51
lag < toV/ OH\/§ 30 DoV OH\/§ (9.51)

Thus, the quasistationary distribution of subcritical bubbles with a distribution function
Y(N,t) = (N, Ne) 9.52)

and a flux J(N,t) = J(N, N,) is established after the time ¢ > .

The number of gas molecules in a critical nucleus, /N, depends on time due to the deple-
tion of the solution; however (at the stage of intensive nucleation), this dependence, as will
be shown below, turned out to be rather weak. Therefore, 1)(N, N.) and J(N, N.) can be
regarded as slowly varying functions of the parameter V..

9.2.3 Quasistationary Distribution of Subcritical Bubbles

As was shown in Refs. [311] and [300], it is convenient to describe the nucleation process
after the establishment of the quasistationary state (t > t1,¢) in terms of the flux J(N,t). For
this purpose, let us express the distribution function via J(N, t), using Eq. (9.20)

Nmax
_AF AN’
k5T D(N)

BN, 1) = exp (

J(N',t) exp (AF(N/)) ,

i T (9.53)

where Ny,.x 1s the upper bound of the region of nonzero values of flux and distribution func-
tion in space N. Since exp (AF(N)/kpT) has a sharp maximum in the point N = N, the
integral can be taken using the saddle point approximation and we get

a

) = 20 o (LAEOO) T e (AEGOD) g
N

D(Nc) kBT k‘BT
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300 9 Nucleation and Growth of Gas-Filled Bubbles in Liquids

Expanding the function AF into a series in the vicinity of the saddle point, we obtain

AF(N) _AF(N) , 1 0AF

N — N, .
T~ T kT N |y VN 053
1 PAF )
20 (NN,
TSkt e | NN
1 0AF 1. N, 1 1 0?AF 1
AR 1y Ne = - L (9.56)
kT 0N 2 "N’ (AN)Z - 2T ONZ AN

Taking into account that, at the stage of intensive nucleation, Ny, > N. + AN holds
and, at homogeneous nucleation, each gas atom is a potential nucleus of a bubble, i.e.,

(N, 1)y =n" (0), (9.57)
we obtain
nt(0) VN, N,
J(N,) = fo 2 exp (—7> , (9.58)
N N, 1 N — N,
_ L _ -'e - _ ¢
P(N,t)=n (O)exp{ 3 <1n N +1>} 5 <1 erf AN, ) , (9.59)
where
1 92AF e
AN, = (W W‘N—NC> ~ 2\/N,. (9.60)

An expression similar to Eq. (9.59) has been first derived in [329]. It demonstrates that the
behavior of the distribution function ¢ (N) significantly changes at N ~ N..

9.2.4 Distribution Function of Bubbles in the Range N. < N < N

Let us calculate the distribution function for bubbles within the range N, < N < N, where
N is determined from the condition AF(N) = 0. In this range, the diffusion term (second
derivative with respect to N in Eq. (9.37)) is still significant, while at N > N, it can be
neglected, because the distribution function becomes gently sloping and the growth in size
space can be considered as purely hydrodynamic. From Eq. (9.15), we find that N = eN,. In
variables x = In N and 7 = ¢/2t, the system of equations gets the form [297,308, 309]

oJ N Y -V
J(m,T)\r:zc = J (N.(1)), J(x,T)\T:07I>ZC = (9.62)

In order to estimate the time of the establishment of the quasistationary state, one can omit,
with a good accuracy (it is true already at N. > 10), the term 2¢~% < x. on the right-hand
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9.2 Nucleation in a Low-Viscosity Liquid

side of Eq. (9.62) in the coefficient at the first derivative and substitute e~ for e™*

coefficient at the second derivative. Then

0.7 o ., .. 0% il
5 =@ —we) o+ 27T o (@), =T (Ne(7)) = ().

T=T.

After the substitution J(z,7) = J (¢(z,7), (7)), we have

00 0709 9JOF _ 0506 2 3 (06Y', 2 00 0%
or 090t ot O “0¢ 0x N, 0¢p? \ Ox

The function ¢(x, ) is chosen as ¢(z,7) = (x — x.) e~ 7. Then

0 _ . o _, 09 _

¢ a0 gl
Selecting the function £(7) such that

ot 2 (06> 2e 77 i) 1—e 27

_— = — —_ = T) = —

Or N, \ oz N, ’ N, ~’

we obtain equations
05 _
ot 0¢*

which can be solved exactly. As a result, we obtain

J(x)|z:zc = J(N), ¢($,T)|I:zc =0,

J = J(N.) {1 et (2%?)} — J(Nuo) {1 — erf [p(r) (& — )]}

where
p(7) =e T/ Ny/ (1 —e27).
Hence, we find the relaxation time (induction time) as

trel < toln Neo.

N 99 9z?

301

in the

(9.63)

(9.64)

(9.65)

(9.66)

(9.67)

(9.68)

(9.69)

(9.70)

The total relaxation time needed to establish a quasistationary state in the range N < eNg

is determined from Egs. (9.51) and (9.70) as

N,
tran = to/ Neg In —0 +toln Neg = toIn Neg = tag.

V2
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302 9 Nucleation and Growth of Gas-Filled Bubbles in Liquids

Expanding the integrand in Eq. (9.53) near the lower bound at ¢ > ¢,¢], we obtain the result
for the distribution function

Nmax
J(NC) 1 N / 1 1\ 2 /
N.,t) = ——In—(N-N)-——(N-N N
w0 = 507 [ e fim v - ) - eV - 2
N
A(N)
J N 2
= 5 C NG e (9.72)
c(v)
nL(O) NC N 2 N Nc
= ~ [1 —erf(C (N))]exp <4ln NCQ)’
where
1 N Nipax — N
C(N)=zVNln—, A(N)="2_"1C(N)>1. 9.73
The definitions D(N.) (Eq. (9.72)) and J(N.) (Eq. (9.58)) are taken into account in this
equation.

Thus, within the size range 2 < N < eN,, the distribution function of bubbles depends
on time only via the critical size (N, t) = ¢(NV, N(t)). Note that, with an accuracy of small
terms in the first derivative (of the order of 1/N,. < 1), the derived distribution function is
joined at N = N, with the function represented by Eq. (9.59). In view of quasistationary
state, O /0T = 8J/ON = 0 holds and

J(N,T) = J(eN¢(1)) = J(N.(1)), (9.74)

‘N(N,T>Tlag

i.e., the flux is almost steady at ¢ > t1,5 (Eq. (9.71)) in the range 2 < N < eNg.

9.2.5 Distribution Function of Bubbles in the Range N > N

Let us now consider the case of large bubbles when N > N = eN,. We omit the term 2¢ ™% in

Eq. (9.62) (as will be shown below, it is proportional to the number of gas atoms in the critical
bubble at the time of intensive nucleation 7)) and the second derivative because of the weak
dependence J(N) and the smallness of the coefficient in front of this dependence within the
studied range x > x. + 1 (N > eN,.). As a result, we obtain the equations

aJ oJ

or = —(m—xc)%, J(x)lzc+1 = J(Ne(7)),  J(N,7) = J(Ne(Ten)),  (9.75)
where
N
Teh =7 —In(x —z,) =7 —1Inln <NC(T)> (9.76)
is the characteristics of the differential equation (9.75). Thus, we have
N = N.(7) exp(exp(T — Ten))- (9.77)
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9.2 Nucleation in a Low-Viscosity Liquid 303

At 7, = 0, we obtain that the maximum number of atoms in the bubble is equal to
Nimax(7) = Neexp (exp (7)) = Neo exp(exp 7). (9.78)

Here, we neglected the small variation in N.(7) in the process of bubble nucleation (the
validity of such approximation is shown below, see Eq. (9.104)). This result implies that all
bubbles emerge at different times, however, with the identical initial amount of gas, N.(7) =
Nyo.

In the range N > N , the distribution function also changes slowly; hence, the diffusion
term in Eq. (9.20) is small. Ignoring the second-order derivative of (N, t) with respect to
N and taking into account Eqgs. (9.58) and (9.33), we obtain that the bubble-size distribution
function within the e N, < N < Np,.x range has the following form:

(N, t) = J(N,) <dd]:)_l = nL(O)ﬁeXp <—]g> m

1 N — Nyax(t)

Here we have introduced (similar to Eq. (9.59)) the error function for the smooth correction
of the distribution function at N > Ny, (t) (this procedure is proven in Ref. [310]).

To determine the time of intensive nucleation, 7, one needs to employ the conservation
law for the amount of gas atoms (Eq. (9.23)), which can be conveniently written as

Nimax

nk(0) — nk(r) = / Ny, ) AN, (N 7) |y

=0 (9.80)
0

From Eq. (9.80), we derive the following expression for the variation of the relative amount
of gas in the bubbles with time:

Z = (n"(0) — n*(r))/n"(0), (9.81)

% _ 2to Ooa_l/) / ’_ 2ty r 8_1/) / /

EE nL(O) aTN dN’ = nL(()) aTN dN". (9.82)
0 eN.(1)

It is accounted for in Eq. (9.82) that, at ¢ > t,¢], the relations
0 oJ
o -0, e -0 (9.83)
ot N<eN, ON N<eN,

hold.
As seen from Eq. (9.58), the determining role in the variation of the flux with time is
played by its exponential dependence on AF'(N,.(7))/kgT = N.(7)/2. Even a small change
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304 9 Nucleation and Growth of Gas-Filled Bubbles in Liquids

of this quantity strongly affects the length of the time interval, where the particles of the new
phase are intensively formed. Indeed

AF(N.) N. 1pV., 14r(20)3

=5 =5 RS .84

When deriving Eq. (9.84), we accounted for the relation
3
4 dm (2
V. = _WRE _ 2 (2 (9.85)
3 3 p

and the Henry law, Eq. (9.10). From Eqgs. (9.58) and (9.84), we obtain that the flux sharply
decreases at

n"(0) —nt(r) _
nf) 2 =N

<1, (9.86)

where 7y is the time period of intensive nucleation.

At the same time, we obtain that, at N.g > 1, the relative change in the amount of gas
in the critical nucleus is rather small and almost everywhere (except for the multiplier with
exponential dependence on N, (7)) one can assume that

No(T) 2= Neg = No(7)|,_o > 1. (9.87)

Thus, Eq. (9.86) is responsible for the time of intensive nucleation 7.
For the dependence of the flux on time at eN.(7) (Eq. (9.74)), we have the same depen-
dence as in the point N

J(No(7)) = J(Nu) exp (=N Z(7)),  Z(0) = 0. (9.88)

With the account of the characteristics equation (9.76), the general solution as a function of Z
can be written as

J(N.(1))] = J(Neo) exp (—NeoZ(719)) - (9.89)

T>Tlag

Expressing the term 0v)/07 via the continuity equation (9.18) and using Eq. (9.89), we obtain
the equation for the determination of Z(7) as

Nmax(T)
dz 2t0 — Z
—_— = N.J(N,. N, «0Z(T0) qN” | . .
= s | NI + / T(Noo)e d 9.90)
eN.(T)

Here, we took into account that the flux is equal to zero in the N > Ny, range.
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9.2 Nucleation in a Low-Viscosity Liquid 305

Let us substitute Eq. (9.89) into (9.90) and going over to the integration variable 79 =
7o (N, 7), integrate by part with the account that, according to Eq. (9.76), 7o(7, eN.) = 7 and
70(0, Nmax) = 0. Then we have

dz 2t dN
— = ——— | eN.J(N. N, _— 91
ar ~ nE(0) eN:J(N.) +/J( c(7’))(17_0 dro 9.91)
2tO r _N Z(‘r ) dZ
= =% | J(No)N, N, 0Z(r0) 2 N(r — 74, N,
nL (0) J( 00) max(T) + / J( 00)6 dTg (T 70, c) dTO

0

This equation can be solved by the method of successive approximations.
Since the integral term is of second order of smallness with respect to J(N.o) < 1, in the
first approximation, we have

dz 2to

& = i (0)” (Neo)Nmax(7) = Aexplexpr),  Z(0) =0, 9.92)
where
2t0J(Neo)Neo  (Neo)?/? Neo
A= = — . 9.93
nL(0) NS (9.93)
From Eq. (9.92), we obtain
Z(1) = A/exp(exp 7)dr" ~ Ae” 7 [exp(expT) — €] &~ Ae” 7 [exp(expT)]. (9.94)

0
In view of the very fast increase, the integrand gives the main contribution to the integral at
the upper limit.
The time period of intensive nucleation can be determined, using Eq. (9.86) and substitut-
ing 7 = 7 into Eq. (9.94), as

NooAe ™ exp (expn) = 1. (9.95)
Taking the logarithm of Eq. (9.95), we find the equation
- 1 T N
eN —7y=In AN =1In [Nfoﬂ exp ( 5 )1 , (9.96)

which is solved by the method of successive approximations (see Appendix A.1). In the case
that the inequality In ﬁo > 1 is fulfilled, we get

1 1
™ ] In(1 In(1 In(... 9.97
e nANCO+n<nANCO+n<nANCO+n( ))) 9.97)
or, with an accuracy of the terms of the order of (111 lnﬁco) (ln ﬁco) -
e™N ~1In L +1n lnL (9.98)
~ ANCO ANCO . .
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306 9 Nucleation and Growth of Gas-Filled Bubbles in Liquids

Equation (9.95) is satisfied with the same accuracy. Retaining principal terms in Eq. (9.94),
we obtain

N. 2 Neo)?/? N.
e™N = 20 (1— ~ 1n%>, ™~ =1In 20 > 1, (9.99)
c0

Neo _ 4IR. | Neg

tN=2t01n 5 = 3aDd n B . (9100)
Combining Egs. (9.94) and (9.95), we find at 7y > 1 that
Z
() NoZ(r) = ™7 exp | (€™ — e7Y]. (9.101)
Z ()
Differentiating with respect to 7, we obtain
dz
Neo d(T) =—eN Texp[— (N —€T)]+e"e™ Texp[— (TN —€T)]. (9.102)
T
Taking into account Egs. (9.84), (9.86), and (9.102 ), Eq. (9.76) yields
07 1 1 dN, 1 dz
e e — 92— 9.103
or T M(N/No ()N dr T Wm(N/N, () dr ©.109)
1 2
=1+ ————— (" —1)e™ Texp|[—€e™ (1-€"™)] = 1.

In (N/N. (7)) Neo

It follows from Eq. (9.103) that in the range where the inequality exp (e~ ™) < 1 holds true,
i.e., almost within the entire range of values

0<7< Ty —e ™ =N, (9.104)

we have dry (N,7)/dr = 1, and only in a very narrow range (with a width of ~
(InTy) e~ ™) in the vicinity of 7y, this value increases up to 2. Hence, at the stage of
intensive nucleation, the variations in N.(7) with time can be ignored, as it was the case in
Eq. (9.78).

The number of bubbles in unit volume, Ny, is determined by

t
N, = / J(N,)dt 2 J(Nup)t = 2toJ (Nuo)T- (9.105)
0

At 7 = 7 the number of bubbles formed at the nucleation stage reaches its maximum value
Nénax = 2t0J(Nco)TN, (9106)

where 7y is determined by Eq. (9.99).
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9.3 The Intermediate Stage 307

The same expression can be derived, using the definition of Ny,.x (Eq. (9.78))

Nmax Nmax
dN
N eN.
(9.107)
= QtQJ(NC) Inln NLX(t) = QtOJ(NCQ)T.

C

It can be easily seen that this equation yields the expression for the maximum number of
bubbles, which is analogous to Eq. (9.106). The passage to the size distribution function
(R, ) is made in accordance with p(R,t) = (N, t) dN/dR, where the dependence of N
on R is determined by Eq. (9.16).

9.3 The Intermediate Stage

After the end of nucleation the intermediate stage (tx < t < ty) starts, when the amount of
excess gas in the solution is sufficiently large for the growth of the formed bubbles but too
small for intensive nucleation of new bubbles (since the nucleation rate depends on the excess
amount of the gas to a very high extent). Therefore, the number of bubbles per unit volume
remains virtually constant during this stage. The amount of excess gas at the intermediate
stage decreases, tending to the equilibrium value, so Eq. (9.36) can be used to determine the
amount of gas in a bubble.

At N > eN,, for the main part of the spectra in the N-space one can neglect the diffusion
term in the definition of the flux. Then, we obtain a complete set of equations, which includes
the continuity equation for the distribution function (N, ¢) with the initial condition at 7 =
7n (which is determined by the distribution function formed at the end of the nucleation stage,
Egs. (9.59) and (9.79)) and the law describing the change in the number of gas atoms

g—qf + %i]\l[\/ =0, Jn = ((11—]:@0, 7,/1(N,7')|T:TN = (N, Tn). (9.108)

The distribution function formed after the completion of the intensive nucleation stage at

N > eN. determines the growing bubbles at 7 > 7, because bubbles with N < eNy

rapidly disappear and make a minor contribution to the law of conservation, owing to small

amount of gas. That is the reason why the distribution function o (N, 7x) (which is deter-
mined by Eq. (9.79)) can be used with sufficient accuracy.
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308 9 Nucleation and Growth of Gas-Filled Bubbles in Liquids

Let us write the law of conservation with respect to the number of gas atoms in the form
of Eq. (9.23) as

Nmax
02 (0) — nk(r)] [1 - 3(r)] = nk(0) Z(r) = / N@(N,7)dN 9.109)
0
Nmax
~ / Ny(N,7)dN = Q,
eNco
where
3 = [ V(T an ©.110)
0

is the relative volume of bubbles and () is the total number of gas atoms in bubbles, which are
contained in a unit volume of the liquid. If ¢ is not very small, ¢ < 1, one should consider
the relative increase in the volume of the solution. With Eq. (9.10), we obtain

pY n(7)

= — = V =
kaBTV n’V 5

V. ©.111)

With Eq. (9.111), the law of conservation (Eq. (9.109)) takes the form

Ly _ oL () -
[n(0) =" (D] [ = &(7)] = =5 3(7), 9.112)
which yields
n*(r) = n"(0) {H%%]_ : 9.113)

Thus, we obtain the relative swelling of the liquid V' (1) /V (0) as

Vir) 1 snk(0) ~ S
ORI e R T 9.114)

When deriving this relationship, we take into account the fact that the solubility coefficient
0 is usually much smaller than unity. Further, we will assume ¢(7) < 1 and, accordingly,
onl(0)/nt(r) < 1 (if (7) ~ 1 it is necessary to take into account the increase in the total
volume of a solution [310]).
The continuity equation in the space of N (Eq. (9.108)) in the time interval ¢; of the
existence of the intermediate stage has the following form with allowance for Eq. (9.36):
.

B N
o7 (1-2(7)) N (wln E) =0, 9.115)
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9.3 The Intermediate Stage 309

and the initial condition is defined by Eq. (9.79) at 7 = 7

’L/)(N, TN) o 2t0J(NCQ) 1 (1 _ eI‘f N — Nmax(TN)

= (VL) 2 Yol ) v — ). 0116)

Here we have introduced the 6-function to take into account the fact that bubbles with N <
eN,q rapidly dissolve, making a minor contribution to the balance of gas atoms. The time is
calculated referred to the moment 7y when the stage of nucleation is completed.

As is known, the solution of Eq. (9.115) can be expressed via the characteristics of this
equation and the distribution function at the initial time moment as

2t0J(Nco) 1 Ny — Nmax(TN)
YINT) = N (Ne /N 2 o AN,

) 0(No — eNco)%. (9.117)

Here Ny = Ny (N, 7) is the characteristics of Eq. (9.115), which is determined by Eq. (9.36)
with the initial condition N|__, = Ny, where Ny is an arbitrary point of the initial distribution
function within the range of values from e N, to Nyax(7n). Let us introduce the variables

No N, (1) Z. 2
To = Neo’ Tem Neo " (Ze - Z(T)) ©-119)

r=1In

N
NcO '
with allowance for the fact that Z, ~ 1 at nZ /n’(0) < 1 and rewrite Eq. (9.36) as

dz Ny
=(1-27 —z.), _a=x9 =1 . A1
0 ( (1) (x — zc) xl._og=z0=1In N (9.119)

The general solution of Eq. (9.119) has the form

= B(7) (w0 — f(7)) , B(1) = exp p(7), (9.120)
o(r) = [ (L—=Z(r")) dr’, 9.121)
/
[ ! 1 ! /
f(r) = / (1= 2()) g dr

(9.122)

- / e (1= Z()In (Z_ZZ()> ar'

From these formulas, we derive the relationships

N Ny No 1N
N B(r) (ln N f(T)) : lnN—c0 = 30 In o +f(r),  (9.123)

In
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310 9 Nucleation and Growth of Gas-Filled Bubbles in Liquids

Nmax(7) = Neg exp {ﬁ(r) {ln M“;‘V;(OTN) — f(r)] } , (9.124)
Ny No 1 [ 1 N 1 N
ON = N p(r) P {5(7)1 Neo 71 )} B(rIN’ ©-129)

Using Eq. (9.125), let us write Eq. (9.117) in the form

20 (Neo) 1
ﬂ(T)NlIl(N()/NC()) 2

NO - Nmax(TN)
AN,

Y(N,7) = {1 —erf } 0(No — Nmin(7n)), (9.126)

where Ny, (7) is determined by Eq. (9.123) at Ny = eN.o and represents the lower bound
for the bubbles that give the main contribution to the conservation law for the number of gas
atoms (smallest bubbles have been dissolved). The number of bubbles per atom of the liquid
N} remains virtually invariable during the time of the intermediate stage ¢ . Indeed, it equals

N oI (Nw) DN, N T (Neo)
N, = 0/{¥e0 0 4N = / _2J(Neo)
b NoIn(No/Ney) ON NoIn(No/Ne) —°
Nmm(T) eNco
Nmax
~ 2t9.J(N.o) Inln # = 20 (Noo) T, (9.127)
c0

which coincides with the maximum number of bubbles (Eq. (9.106)) formed at the stage of
nucleation.

Note that when the initial lower bound of the spectrum eN.y reaches the lowest value
Nmin(7) =~ 1 during the dissolution of small bubbles, the size spectrum will be formed from
the initial distribution of bubbles with sizes from eN.y to Nyax (7n). The moment 7* of
reaching N &~ Ny, (7) is determined by Eq. (9.123).

Using the law of conservation for the number of gas atoms, we obtain an equation for the
relative number of gas atoms Z (7)

NmaX(T)
n® (1) 1
Z =1- = Ny(N,7)dN 128
M =1= s =y | N ©0.128
Nmin(T)
NmHX(T)
_ Qtoj(Nco) dN ~ 2tOJ(Z\]cO)ZVmax(7-)
TLL 0 T N (NvT) L Nmax(T)
0)8( )Nmin(T) In (—ONCO ) nL(0)5(7) In (—Nco )
. 2t0J(Nc())Nco 1 NmaX(T)
- L Niax (T ,
WEOA() 1 (Nge) Moo

When writing Eq. (9.128), we used Eq. (9.124) and replaced the slowly changing logarithm
In (No (N, 7) /Ngo) by its value In (No(Npax(7),7)/Neo) (here we take into account that
No(Nmax(7), 7) is the maximum value at the upper limit of the size spectrum at the nucleation
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9.3 The Intermediate Stage 311

stage, i.e., at the point mainly responsible for the value of the integral) and also considered
that Nppin (7) < Nmax (7). Then Eq. (9.78) yields

No(Nmax(7),7)/Neo = exp(exp(Tn)) (9.129)
and Eq. (9.128) takes the form

1 1
Z(1) = — exp(—e™)——exp|8(7) (™ — f(1))]. (9.130)
()= g O™ gy exp () (€7 — F ()]

During the lifetime of the intermediate stage 0 < 7 < 7 (remember that the time is taken
with reference to the completion of the nucleation stage 7,), the relative amount of gas in the
solution Z(7) changes within the limits

1 n* n*
<Z(r)<Z =1-——<1— ——.
N,y <20 < 2(r) nE(0) —nk ~  nk(0)

The excess amount n* of gas in the solution at the end of the intermediate stage is deter-
mined with an accuracy at which the excess of the substance is regarded as negligible (usually
n*/nl(0) < 1/e). The relative decrease in the amount of excess gas in the solution with
respect to its initial amount changes within the range n% /n’(0) < n*/n’(0) < 1. When
T — o0, n* tends to the equilibrium amount of gas per unit volume of the liquid nZ. The
condition (9.131) determines the lifetime of the intermediate regime 7.

Using Egs. (9.118) and (9.121), let us estimate f (7) from Eq. (9.122) in the range 0 <
T < Ty

Z(1)|;=0 = (9.131)

T

f(r) = / (1—2Z(7") e ?T g () dr' = (9.132)
0
f / 7 " " 1 /
:/(1—Z(T)) exp —/(l—Z(T )) dr In (1_2(7_/))2] dr

0 0

Considering that e=#(7) < 1, we get

T / ) ,
flr) < / (1-Z(')In m] dar ©0.133)
——2 [(@-z2e)m- 26 <27 < 2y
0

The expression (1 — Z(7))In (1 — Z(7)) reaches a maximum at Z(7) = 1 — 1/e; this value
lies within the domain of Z (7).
Thus, f(7) can be neglected at small 74 < e”~. Then, with Eq. (9.120), Eq. (9.130) takes
the form
de 1

Z2(r)=1-T=5 - exp[(e¥ —1)e™ — o). (9.134)
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312 9 Nucleation and Growth of Gas-Filled Bubbles in Liquids

For e™ >> 1 the inequality ¢ < 1 must be fulfilled since Z(7) does not exceed unity;
therefore, e — 1 = ¢ and Eq. (9.134) can be written as

n
—0 = Z =1-— (9.1
) 90| 7=0 Oa (Tf) ’I’LL(O) (9 35)

dep

Z(T) = -

N P [(e™ = 1)g] =1—

From these formulas, we find the equation for the determination of ¢ ¢

1

Z(T¢) = expl(e™ —1 =1- , (9.136)

(77) = gz e[ ~ Vs =1~ 7

1 n* 1
Solving Eq. (9.135), we determine the behavior of Z (7) in the 7 < 7¢ range as

® 4o’
/ B — (9.138)
J 1= (Neo) ™ exp (e = 1) ]

With the notation

¢ = (Nu) exp[(e™ —1)¢], (9.139)

we obtain
A ¢ [
—In — (e — 1)1, (9.140)
C(l—(:) 1_C 1/Neo ( )

1/Nco
where

Cmax = (Neo) " exp[(e™ — 1) ¢]. (9.141)

From this expression, using Eq. (9.135), we obtain

20 (Ne)'epl(e™ —1)g] _ (Neo) "exp[(e™ —1)7]
1= 2(1)  1—(No) lexple™ —1)g] T () (9.142)
and
2(r) = — @l Z 7] (9.143)

N +explley —1)7] —1°

Taking into account Egs. (9.120)—(9.122), one can determine from Eq. (9.124) the maximum
number of gas atoms in the bubble

T

Niax(7) = Neo exp exp/(l - Z(1")) dr’ (ln MI?V;.(;M - f(T)) (9.144)
0
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9.3 The Intermediate Stage 313

and from Eq. (9.28) the radius and number of gas atoms in the critical bubble

N, R, \? nL(O)—nL>2 72
= ~ = = < 9.145
Neo (Rco> (nL(T) —nf (Z. — Z(7)}’ ©-145)
where
—T T/1 z(x)) ar’ | (1= z()1 Ze 2d’9146
f0)= [ew |- [ (1=267) ar’ | 0 - 2| 2 | o 040
0 0

Now let us determine the lifetime of the intermediate regime 7, using Eqs. (9.143) and
(9.136)

(Neo — 1) Z(75)

expl(e™ — 1) 7] = =0 TCARR (9.147)
- — [m (Nep — 1) +1In (”;(*O) - 1)] .

From Egs. (9.120) and (9.135), let us derive the time dependence of the 3(7) coefficient in the
expression for the distribution function at the intermediate stage

B(T) = expp(r) = [NCOZ(T)]l/(CTN_l)

1

1
=e’ — In |1
e exp{ o~ — 1 n[ +NcO

exp[r (e™ — 1)]} } (9.149)

T 1 1 T, T
=e [l—eTN_lln{l—&—Ncoexp[T(eN—1)]” ~el.

We derived this relationship employing the inequality e™ — 1 > 1.

Equation (9.149) sets the lower bound of the lifetime of the intermediate stage. Let us
determine the upper bound of this range by equating 5(7) f(7) to its maximum value. This is
possible, because the Z(7) function in Eq. (9.130) monotonically increases within this range.
Indeed, using Egs. (9.120) and (9.149), we obtain

T ) Z 2
Br)f(r)= [ e?D=¢0) (1 - Z(')) In (7_ e ) dr’
0/ Ze—Z(1")
< —g /eT_T, dr’ < Z(eT —1) (9.150)
0
2 2
~ = (e —1) & (B — 1) ~ ().
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314 9 Nucleation and Growth of Gas-Filled Bubbles in Liquids

In this formula, we replaced e?(M—e() by a larger quantity e™ 7 and the product

O )

by its maximum value % Substituting Eq. (9.150) into Eq. (9.130), we obtain

Z(r) ~ NloeXp[(eTN _1_2> @(T)]. 9.151)

e

Accordingly, we should replace the term e™ — 1 in all previous formulas by e™ — 1 — 2/e.
This means that the upper and lower bounds of the lifetime range of the intermediate stage for
e’ > 1 differ by a small value of the order of 2/ [e (e™¥ — 1)] < 1.

Using Eqgs. (9.133), (9.143), and (9.149), and taking into account Egs. (9.58) and (9.33),
we obtain from Eq. (9.126) the distribution function at the intermediate stage

(N, t) = n*(0) ]\;“0 exp (—%) (9.152)
1 L4 g N Nuna(0)
* Nn(N/Noo) + F(05(0) 2 (1 N ) ’
where
fr) =2 [ {1 ol - 1)1 }
0

(9.153)

TN __ 1 n _ 1

x In {1 + exp (e )7l } dr’ ~ 2re” !
NCO

and 7 is defined by Eq. (9.37). Thus, Eqgs. (9.127), (9.148), and (9.152) fully describe the

kinetics of the intermediate stage (txy <1t < ty).

9.4 The Late Stage

After the termination of the intermediate stage, when the density of the gas dissolved in the
liquid or melt becomes close to the equilibrium value n* bty N nk, the late stage begins
(t > ty). At this stage, the evolution of the system undergoes a fundamental reorganization.

The conditions fulfilled at the late stage are
20
—— < 1, (9.154)
pk R.(t)
and the approximation of a low-viscosity liquid (Eq. (9.12)) (R.(t) — oo att — oo) turns out
to be valid for any viscosity value 1. With Egs. (9.154), we then obtain

lo 20

—_ > . 9.155
dDn > pLR, ( )

www.iran—m L\V‘dLLC(l m

Age Crwdivs 9 Olgils @ yo



9.4 The Late Stage 315

The viscosity, according to Eq. (9.155), determines only R.. (¢) and, along with it, the time at
which the system reaches the late stage.

The kinetics of the separation of gas-supersaturated liquids at initial and intermediate
stages significantly differs for viscous and low-viscosity fluids (see [310]). Thus, for the main
spectrum of bubbles at the late stage, when conditions (9.154) are fulfilled, Eq. (9.21) yields

L AR | p"42/R. 20 (1 1 (9.156)
kgT 06N  pl+20/R pl \R. R ’
and
dN D, ., 1 6AF\ D, ,;20(1 1
Qi fa2l47rR n ( kpT ON > 7a2l47rR n s \r " R) (9.157)

Here 7iZ is the concentration of the gas near the bubble, a value that does not coincide with
the volume-average concentration in the general case (see below), and « is determined in
Eq. (9.21).

Taking into account that 20/ R < p’ holds for the main bubble spectrum at the late stage,
we obtain

4 2 4

NkgT = —R3 (pF + 22 ) ~ ZZR3pL,  pb =pt(n.) , (9.158)
3 R 3

dN pl 5dR

- L 4 —_ 1

T " ET Mg ©.159)

and

(9.160)

a2t PP \RR

dR D_; 20T ( 1 1 )

In the equations for the distribution function and the initial condition at the late stage, it is

convenient to go over from the variable N (number of gas atoms in a bubble) to the adjustable

variable R (bubble radius) (note that, according to the terminology of Eq. (9.10), the variables

R and N are referred to as thermodynamically stable and unstable, respectively). For this

purpose, let us integrate the complete distribution function (9.17) with respect to N resulting
in

T AN
oVt = [0 N5V - V) aN = v (V) ©.161)
0 N=N(V)
The continuity equation
o 0 pl +20/R, 0 dN
o ON {D () (1“ iR )Y T TN @Y ©-162)
is transformed into
D d [dN dR o [dR
o~ " OR [Ed_N} ?="3r {54’ ©-163)
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316 9 Nucleation and Growth of Gas-Filled Bubbles in Liquids

dN

Pliy, = v (N (R)) = ; (9.164)
= dR N=N(R)
where dN/d¢ is defined by Eq. (9.159). Deriving this relationship, we employed the fact that
0 dR 0
— = N,t)dN = p(R,t)d 9.165
= () (3x) v = proar ©.165

holds (see Eq. (9.161)). Accordingly, the law of conservation (Eq. (9.109)) for the amount of
gas in the system takes employing Eq. (9.161) the following form:

1 7 _dR 17
Z(t) = nL—(O)o/ —dN— nL(0)0/¢(R)N(R) dR (9.166)
1

_7T
) 3

/Lp (R,t) R®dR.
0

By virtue of formula (9.158), we arrive then at

AN _ o p" dR

- = = —47R?j 9.167
a kpT dt TR R, ©.167)

where jp is the gas atom flux density at the bubble surface. The normal to the bubble surface
is directed outward; therefore, jr is negative for a flux that is directed from the bulk of the
liquid to the bubble.

In limiting cases, depending on the system parameters, the flux jr can be determined both
by the boundary kinetics and by the supply of gas atoms from the ambient medium. To obtain
the flux jg in the general case, let us use the results of Refs. [300] and [329], which show
that the entire region of the medium outside the bubbles at R >> [ can be divided into two
parts: the near-surface part (R < r < R+ [, where the boundary kinetics is important) with a
certain density of gas atoms n and the remaining part (R + [ < r < oco). The parameter n is
determined from the continuity of the flux in the R 4 [ point. At R > [, one can write

j‘?“=R+l—6 = j‘r=R+l+e ~ j|r=R—a = j|r=R+s ’ e —0. (9-168)

Considering the solution of gas atoms as weak, one can write the following expression for
the near-surface region:

: : D _
~jlre s ™ —dler = 0@47732 (n* —nf), (9.169)

where nk is the equilibrium density of gas atoms near the surface of a bubble of radius R.
According to Eq. (9.10), we have further

1) 20
L L
R =T (p - R) : (9.170)
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9.4 The Late Stage 317

and, for a critical-size bubble we have
) 2
L= 2 (pL + —U> = al (), 9.171)

where 77 (t) is the average density of gas atoms in the system.

The pressure in the liquid p~ determines the equilibrium value of the gas density n%, and,
as follows from Eq. (9.4), p = nL'kpT/§ holds. Substituting this value into Eq. (9.171), we
obtain the critical size R, as

5 2 2 L
A (9.172)

Be= kpT nl(t) —nk — pLal(t)—nk

Apparently, at t — oo, the critical size R. — oo and the gas density n”(t) tends to the
equilibrium value.
Equations (9.172) and (9.154) imply the condition that determines the late stage of evolu-
tion
nt(t) — ng
ng

< 1. (9.173)

Since the supply of gas atoms from the medium is fairly slow, there is sufficient time for
the establishment of a quasisteady-state gas density distribution near the bubble surface (see
Chapter 4 and [153,300,311]). To find it, let us use the quasisteady-state diffusion equation

M _ pan=o, nlrg =k, (9.174)
ot
1) 20
_al— O (pr 29 9.175

On this basis, we obtain
. 2D g
—jl,p=47R E(n —n"). (9.176)

From the condition of continuity of fluxes (9.169) and (9.174) in the point r = R, we
determine the gas density near the bubble boundary n” as

_ R R\ "
AL = (nL - CYQ—lnL> (1 + O;—l) . (9.177)

For the flux of gas atoms onto the bubble surface, we get

D[ aR/2
—j —ArR2Z [ —= ) (pl — nk). 1
Ir—p = 4T (1 +aR/2l> ) G-178)

Apparently, Eq. (9.178) describes both limiting situations: at aR/2] < 1, we get the
“boundary” growth kinetics (the free-molecular regime Eq. (9.10)); at «R/2l > 1, we have
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318 9 Nucleation and Growth of Gas-Filled Bubbles in Liquids

the growth kinetics determined by the diffusion supply of gas atoms to the bubble surface. If
ais not very small and R > [, the case of «R/2l > 1 is implemented at the late stage. Then,
substituting 7* and nf, from Egs. (9.170) and (9.171) into Eq. (9.178) and using Eq. (9.167),
we obtain

dR 201 (1 1
=D (= -2, 9.179
dt pLR<RC R) ©-179)

Note that the set of equations (9.179), (9.163), and (9.166) fully coincides with the com-
plete set of equations derived in Chapter 4 but one parameter, « = 20wco, /kpT (Where ¢oo
is the equilibrium concentration of the admixture near the boundary and w is the volume per
admixture atom in the solution) with the dimension of length is substituted by the parameter
¢ = 206 /p” having the same dimension. Thus, both the method and the results of Chapter 4
are applicable to the solution of this set of equations.

As is shown in the mentioned chapter, this set of equations at il () — nl' — 0 starts
to “forget” about its initial conditions in time and acquires an increasingly universal nature,
asymptotically tending to a self-similar form, which is independent of the initial conditions.
The only parameter dependent on the initial distribution function is the time moment at which
the bubble distribution becomes fairly well describable by the universal distribution function.
In fact, the actual pattern of the time-asymptotic distribution function depends on the mass-
transfer mechanism. The process of the transformation of the distribution function from an
arbitrary to the asymptotically universal one is thoroughly considered in Chapter 4 for the case
where the initial distribution function has an infinitely long tail at R — oo. In our case, after
the intermediate stage, there is a finite tail at R > R, different from the fluctuational one, and
the process of the transformation to the asymptotically universal function occurs sufficiently
rapidly.

Let us introduce, just as in Section 4.1.2, the reduced variable v = R/R,. and rewrite
Eq. (9.179) in the form

d_ oo bus1 uan,
dt — TpL R3 w2 R, dt”’

(9.180)

where R, is determined by Eq. (9.172). Since dR./dt > 0, it is convenient to introduce the
new time variable 7 = In [Ri’(t) / Rg’o] instead of time, ¢. Then we can rewrite Eq. (9.180) in
the canonical form (see Eq. (4.24)) as

du? )
% = (u—1)—u, (9.181)
where v = 3D¢ (dR3/ dt)_1 is a dimensionless parameter. With ¢ (u, 7)du = ¢ (R, 7) dR,
the complete set of equations (9.163) and (9.166) gets the form
0y (u, o [0
o (u, ) N { u

E@(U,T)] =0, (9.182)

or ou

R
P00 = 0 (1) =0 (7). ©.153)
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9.4 The Late Stage 319

_ 1 4w p*(n) R T/Oo 3
Z(T) = L (0) 3 T e o (u, 7)u’ du. (9.184)

0
At the late stage, nZ(7)/n(0) < 1; therefore, let us write Eq. (9.184) in a simpler form
1 4mp™(nd)RY

s 3 _
1= ke /<p(u77)u du, K= nL(O)? T (9.185)
0

As shown in Chapter 4, the resulting set of equations (9.181)—(9.185) has a stable solution at
T — ooif 7| _ . — 70 = const. This condition is fulfilled if du/dr < 0 for all sizes except
for u = wug, for which, in the zeroth approximation,

d dd
d—“ —0, a—d—“ —0. (9.186)
T U=U0o, Y=70 wdr U=Uo,; Y=70
On this basis, we find

5 Y= = % (9.187)

In fact, these values are determined by the form of Eq. (9.180), i.e., by the mechanism
of mass transfer or even by several simultaneously acting mechanisms. At the same time,
@ (u,7) in our approximation 7 — oo tends to the universal function, virtually forgetting
about the initial distribution and becoming nullified at u > w( together with all its derivatives
with respect to u. This is what determines the only stable (with respect to fluctuations) solution
(see Section 4.1.2). Thus, in this approximation and with v = 27/4, Eq. (9.181) yields

du 1 3
o= o) =552 <u - 5) (u+3), (9.188)

and the solution of Eq. (9.183) can be searched out in the form

X(T—"_(b)ﬁv ’U,<’U,0:%,
o(u,7)= (9.189)
07 UZUOZ%a

where x (7 + ¢) is a function to be determined from the conservation law, Eq. (9.184), and

[ du 4 5 (3 1 33
o (u) /g(u) 3n(u—|—3)—|—3n<2 u>—|—1_2u/3 o575 (9.190)

Substituting Eq. (9.189) into Eq. (9.184), we find that

X (T+ @) = Aexp [— (T + ¢)] (9.191)
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320 9 Nucleation and Growth of Gas-Filled Bubbles in Liquids

and obtain
—(r+o(u) _L_ 3
Ae 7@ u <y,
o (u,7) = (9.192)
3
07 u Z 2
where
3/2 -1
ud
A= & / e ?W ——du| . (9.193)
g(u)
0
The condition | _ __ — 7o determines R?(t) from Eq. (9.181). We get
4 20
R} (t) = §5Dﬁt + RS, (9.194)
With this relation, Eq. (9.172) yields
al(t)—nl 20 (4. 20 s\ ?

The time ¢ is referred here to the end ¢ of the intermediate stage.
The number of bubbles per unit volume is diminished with time according to the law

3/2 3/2 5
du R‘O
Ny(t) = Ae™ 7 / e l—— =Ae T / e Pdp=Ae " =A ( < > . (9.196)
o s R0
The bubble-size distribution function for the variable u has the form
¢ (u,7) = No(t)P(u), (9.197)
where
o2 exp <_#)
3t 1—2u/3 uw<d
P(u)=1¢ 2°7% (u+3)7%(3/2 —u)'/* 2’ (9.198)
3
O, u > bR
Using Eq. (9.181) at v = 27/4, we obtain
3/2 3/2
/e—¢ (w—1)-2% /e—¢ [u(¢) — 1] do (9.199)
) g J

3/2 s
du a2y
- 3_ QU 62 G
/(u d¢)e ud(b 0.
0

Hence,w = 1, R.(t) = R(t);i.e., the average bubble size at 7 — oo approaches R, (t).
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9.4 The Late Stage 321

To achieve a higher accuracy, one should apply a dependence (1) = 7 (1 —&2(7)),
which was first used in [153—155]. As is shown in those papers and in Section 4.1.2, £%(7) > 0
and 7 — oo ate?(7) — 0; also, the behavior of £?(7) depends on the form of the tail of ¢g (u)
atu > ug. The distribution function ¢(u, 7) at u > ug is determined by the initial distribution
function. At du/dr < 0, bubbles with u > up move in size space in such a way that, passing
over the region of the blocking point 2(7), they consume the whole gas from the dissolving
bubbles, increasing their own dimensions and reducing the total number of bubbles. At the
same time, naturally, the total amount of gas in the system (dissolved in the solution and
evolving into the bubbles) remains constant. A nonzero £2(7) is necessary for bubbles with
u > ug to pass into the u < u( region without sticking in the u¢ point, which would lead to a
violation of the conservation law (Eq. (9.184)).

Note that if we consider fluctuations in the nucleation of bubbles, when bubbles formed
in the direct vicinity of each other merge, then ¢%(7) — £2(c0) = const. These collisions
determine the £?(co) value and the distribution of bubbles beyond the blocking point [294]
(this conclusion has been experimentally confirmed for solid solutions [59]). The £2(7) —
£2(00) value, which is determined by the decreasing tail of the initial distribution function
near the blocking point and beyond it, decreases with time; therefore, the zero approximation
asymptotically becomes exact with time. The estimation of the conditions when merging of
the colliding bubbles can be neglected is done in Appendix A.2 at the end of this chapter.

Since it is very difficult to determine the time of beginning of the late stage, ¢,te, and, ac-
cordingly, the critical size of bubbles in the system after the intermediate stage, one should re-
quire good joining of R, and R,,,x corresponding to the end of the intermediate and beginning
of late stages. Taking into account that in the late stage Riy.x = (3/2)R. (see Eq. (9.187)),
we obtain the equation for the definition of £, in the form

3
Rmax(tlatc) = iRc (tlatc)a (9200)

where Ryax(t) and R.(t) are defined by Egs. (9.144) and (9.145), respectively. Thus, we
prolong a little the intermediate stage until the time #),te, When Eq. (9.200) will be fulfilled.

Let us note that such definition does not allow one a smooth connection for both the func-
tions, Rmax(t) and R.(t), simultaneously. Therefore we shall require a smooth connection
only for the maximum radius R,.x; thus the critical radius R. will have a kink at t = #)a¢e
(see Figures 9.3 and 9.5). It is a consequence of the fact that the definitions of Ry,.x(t) and
R.(t) (Egs. (9.144) and (9.145)) are asymptotical ones, and are not valid in the beginning
of the late stage. In this case it is necessary to use a more rigorous analysis describing the
transformation of the distribution function which was formed at the end of the intermediate
stage, Eq. (9.152), into the asymptotical one, Eq. (9.197), as it has been made in Section 4.2;
this topic is beyond the given chapter.

Taking into account that the value of the critical radius, defined by Eq. (9.145), very
sharply grows at ¢ > tj,4c, for the definition of the critical radius it is possible to use the
simple smoothing procedure

1 1 \!
)= (v + ) 200

where R (#) is defined by Eq. (9.145), and R!3t¢(¢) by Eq. (9.194).
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322 9 Nucleation and Growth of Gas-Filled Bubbles in Liquids

9.5 Results of Numerical Computations

Figure 9.1 shows the results of calculation of the time lag (Eq. (9.50)), 7, the nucleation
time (Eq. (9.99)), T, the time of the intermediate stage (Eq. (9.148)), 7¢, and the time of the
beginning of the late stage (Eq. (9.200)), t1ate, in dependence on the initial critical bubble size.
One can see that the time lag and the nucleation time increase with increasing critical bubble
size, and the time of the intermediate stage and time of the beginning of the late stage decrease
with increasing critical bubble size.

Ua
*’fc v
o
=
&o Ir Tate
o
Y
01 | 1 | 1 | 1
20 30 40 50
N

Figure 9.1: Dependences of Tiag, T, Ty, and Tiate On the initial critical bubble size.

In Figures 9.2 and 9.4 the distribution functions of bubbles are shown for (a) nucleation,
(b) intermediate, and (c) late stages for N,y = 17 and N,y = 24, respectively. In Figures 9.3
and 9.5 the time evolution of critical size R.(t) (dashed curve (Eqgs. (9.145) and (9.194), solid
curve (Eq. (9.201)), maximal size R,ax(t) (Egs. (9.78), (9.144) and (9.187)), and number
of bubbles per unit volume, Ny(t) (Egs. (9.106) and (9.196)) are shown for N,y = 17 and
N.o = 24, respectively.
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Distribution function, @(R,?)
S

10 P S T L " L
o 1 2 3 4 5 6 0 20 40 60 80 100 120 140 00 100 200 300 400 500

Reduced radius, R/R Reduced radius, R/R Reduced radius, R/R

Figure 9.2: Distribution functions of bubbles for n”(0) = 3 x 10'°, N.o = 17 at different times: (a)
nucleation, (1) t = 0.2tn, (2) t = 0.75tn, (3) t = tn; (b) intermediate stage, (4) t = tx + 0.5t¢, (5)
t =tn + t5; (c) late stage, (6) t = tiate, (7) t = Bto, (8) t = 60, (9) t = 8to.

200

< 150

Nucleation
stage

Intermediate

Rmax/RCO’ RC/RC
o
S
T

50

1.0

0.5

0 1 2 3 4 5 6 7 8
Time, (t11,5)/t

Figure 9.3: Time evolution of Rmax(t), Rc(t) (dashed curve (Egs. (9.145), (9.194)), solid curve
(Eq. (9.201)) and Ny (t) for Ngo = 17.
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324 9 Nucleation and Growth of Gas-Filled Bubbles in Liquids

Distribution function, @ (R,7)
=

3 T s 5

0 5 10 15 0 20 40 60 80 0 50 100 150
Reduced radius, R/R Reduced radius, R/R Reduced radius, R/R,

Figure 9.4: Distribution functions of bubbles for n”(0) = 3 x 10'°, N.o = 24 at different times:
a) nucleation, (1) ¢ = 0.2tn, (2) t = 0.75tn, (3) t = tn; b) intermediate stage, (4) t = tn + 0.5¢y,
(5)t =t~ +ty, c) late stage, (6) t = tiate, (7) t = 4to, (8) t = 6to, (9) t = 8to.
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40 c ' D
S 2 :'-g o
& © O O
> 30 Q@ ! @
& o e 8
2 S o @
S 1=
S 0p £ E
g |
Q: : 1 L
10 | | ate stage
' i
0 ! | : | | |
ty t+tfi itN+tlate
. -\ |
= 0.5 | i\
I I I
1 1
| |
0 | 1 | L1l | | t t
0 1 2 3 4 5 6 7 8

Time, (¢1,,,)/1

Figure 9.5: Time evolution of Rmax(t), Rc(t) (dashed curve (Egs. (9.145) and (9.194)), solid curve
(Eq. (9.201)) and Ny (t) for Neo = 24.
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9.6 Conclusions 325

9.6 Conclusions

For the case of bubble nucleation in a low-viscosity liquid supersaturated with the gas,
we derived expressions for the nucleation time (Eq. (9.99)), bubble-size distribution func-
tion (9.135), (9.156), (9.167)), the flux of nuclei in the space of bubble sizes (Egs. (9.134) and
(9.158)), and the maximum number of formed bubbles (Eq. (9.196)) with the assumption of a
small volume fraction occupied by bubbles.

The derived size distribution is the initial condition for the next (transient) stage, when still
there is a sufficient amount of excess gas, but the number of bubbles does not vary practically
remaining at the level reached at the end of the nucleation stage. For such stage the bubble
distribution functions (9.126) and (9.136), the flux of nuclei in the size space (Eq. (9.23)), and
the maximum number of the formed bubbles (Eq. (9.127)) are obtained. For the late stage, the
universal bubble-size distribution function (9.197) is derived; it does not depend on the initial
distribution in zero approximation and becomes asymptotically exact in the course of time.
The number of bubbles per unit volume (Eq. (9.196)) is also obtained for this stage. Thus, we
describe all stages of the process, starting from the initial stage of the nucleation of gas-filled
bubbles and ending with coarsening (the late stage).

Our approximation of a small volume fraction occupied by bubbles does not allow us to
describe an even later stage, where the volume of bubbles exceeds that of the liquid (foam).
This stage requires a separate consideration.
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9.A Appendices

9.A.1 Some Mathematical Transformations
To solve the equation
exp(expT) = Be” (9.202)

atB=1/A4+e>candInln B/In B < 1 (at B = e, the solution to this equation is 7 = 0),
let us use the method of successive approximations

e"=InB+71, €°=0, ' =InB, e¢?=InB+InlnB, (9.203)
etc., resulting in

1

e —InB+In [lnB {Hﬁ [m {mB {1—&-é[ln[lnB[l—k...m”]H

=InB+InlnB+1In [1+ﬁ {ln [lnB [1+ﬁ[m[m3[1+~-~]]]”” :

Expanding this expression for Inln B/In B < 1, we obtain

Inln B InlnB Inln B

e =InB+InlnB + + + + (9.204)
nB  (InBf (InBY
= 1 Inln B
=lnB+InlnB ——m =B+ ———
ns+Inln nz::o(lnB)n n +17 1
InB
Substituting the resulting solution into Eq. (9.202), we have
=1
expe™ =exp [InB+IhnB+mmnBY Yl (9.205)
n
n=1

- 1
1+lnlnBZ —
“— (InB)

= Bln Bexp ~ BInB

S|
In lnB7Z:1 I BY

> 1
lnB—i—lnlnBZ Y4
n

= B = B B)n

= 1
InB+InlnB _
2

n=0
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9.A.2 Estimation of the Conditions when Merging of Colliding Bubbles
can be Neglected

Gas-filled bubbles in a liquid are affected by the buoyancy force; as a result, they float up at a
rate depending on their radius. Therefore, collision and merging of bubbles are possible. Let
us estimate the conditions when merging can be neglected.

The characteristic time of the diffusion-caused change in the content of gas in a bubble is
given by

2 IR,

tair =~ to
The change in the content of gas due to merging of bubbles can be approximately described
by the equation

dv
— = AT R’ N,V Ava. (9.207)
dt coll

Here N, is the density of bubbles and Awv,4 is the spread in the rate of the steady-state mo-
tion of bubbles with respect to its average value, which is due to the balance between the
Archimedean buoyancy force and the Stokes force of viscous friction

2 <R2 - ﬁ) gp
Avy = 9 #7 (9.208)

where g is the gravitational acceleration, p is the density of the liquid, and 7 is its viscosity.
Using Eq. (9.207), we can find the characteristic time of the change in the content of gas due
to merging of bubbles

R 1
tmerg = = . 9.209
e VNZ,AUA 4R2NbAUA ( )
The effect of merging is not manifested at (d—‘t/)con < (d%) qipe Which leads to
1 2 IR,
e 9.210
1R?N,Avs ~ 36a D ©:210
or

3 2712 2 _ 3 -

~adnD |4R.R*Nylsgp (R - R2) > 1. 9.211)

Estimates show that the latter inequality is fulfilled for water if R < 10~3cm and N, >
10 em™3, i.e., for the initial and intermediate stages. At the late stage, this condition becomes
less strict because of a decrease in IV, and, accordingly, an increase in the interbubble distance,
as well as because of a decrease in the bubble size spread, which leads to a decrease in the rate
Awv 4 of the relative motion of bubbles according to Eq. (9.208).
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10 Phase Separation in Solid >He-*He Mixtures

10.1 Introduction

It has been emphasized frequently in the literature [17, 156, 202] that helium and its isotopic
mixtures hold much promise as model systems for studying phase transitions. There was some
well-grounded hope that homogeneous nucleation may occur and be studied in detail in dilute
liquid *He—*He mixtures [156]. However, the respective experiments and the comparison of
the results with theoretical calculations are encountered by some difficulties. One of them
consists in the necessity of realization of the conditions for homogeneous nucleation. Numer-
ous experimental attempts, however, failed to yield unambiguous results; rather, they detected
heterogeneous nucleation which may be connected with vortex formation [43,47].

In the case of solid helium, this problem might be solved provided that high-quality
impurity-free samples are available. The quantum character of the diffusion processes in he-
lium ensures fairly high diffusion coefficients, favoring the performance of experiments within
reasonable times. There exists an essential difference in the nucleation process in liquid and
solid *He—*He mixtures. In the first case it is impossible to attain a large supersaturation
during cooling because of the limited solubility of *He at T — 0. For solid mixtures there
is no such limitation because the equilibrium concentration approaches zero as the temper-
ature tends to zero. In this case, we can achieve a large nucleation rate and the degree of
supersaturation can thus be varied over a wide range. This feature makes the realization of
homogeneous nucleation much easier.

Considerable attention has been focused recently on phase separation (segregation) in solid
3He—*He mixtures [77,78,99, 126, 127,202,269, 270]. The phase diagram of solid He iso-
tope mixtures is shown in Figure 10.1. Though it looks symmetrical, small admixtures of
3He to *He in solid state form hcp lattice unlike bec lattice for “He in *He. Figure 10.1
is taken from [81] where it was drawn on the basis of data of [63] for P = 33 bar. The
evidence of homogeneous nucleation in *He—*He solid solutions was obtained for the first
time in [202], where experimental results have been successfully compared with the theory
presented in [300]. This result permitted an estimation of the most important parameter re-
sponsible for nucleation, the surface tension o at the new-phase cluster boundary, found from
the time of pressure relaxation during the phase transition. In [126,317] the separation of a
mixture has been studied by measuring the pressure and nuclear magnetic resonance (NMR)
simultaneously. Such measurements can provide additional evidence of homogeneous nucle-
ation in solid *He—*He mixtures, and permit the estimation of o, within a single experiment,
from two independently measured quantities, the cluster size and the characteristic separation
time constant, and thus improve the reliability of this very important parameter.
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Figure 10.1: Phase diagram of solid He isotope mixtures *He—*He [81].

Section 10.3 presents NMR measurements in a solid >He—*He mixture as the temperature
was lowered in steps in the course of phase separation [317]. The spin-echo method was
used to estimate the diffusion coefficient, size, and cluster concentration in the *He-enriched
phase. The characteristic phase separation time constant of the mixture was found to decrease
at lower temperatures. The results convincingly support homogeneous nucleation. From a
comparison with theory, the surface tension at the boundary of the phase-separated clusters is
found from the cluster concentration, determined by NMR measurements.

Section 10.4 is devoted to study the influence of the degree of supersaturation on the rate
of the phase transition in solid solutions of “He in *He and a comparison with theoretical re-
sults [88]. It describes precision measurements of the pressure during phase separation in solid
mixtures of “He in 3He allowing one to obtain characteristic times of the phase decomposi-
tion process. A processing of the measurement results gives additional evidence supporting
the view that homogeneous nucleation is realized in *He—*He solid solutions at significant
supercoolings and heterogeneous nucleation at the smallest supercoolings.

The phase separation kinetics at various degrees of supercooling in the solid mixture of
4He in ®He is described in Section 10.5 [202]. The studies were performed in the temperature
range of 100-200 mK through precise pressure measurements. The time dependences of
the pressure change during phase separation were exponential. At small supercooling the
characteristic time constant 7 is almost independent of the final temperature Ty and is about
10 h, which is considered to result from heterogeneous nucleation. In a narrow range of
T't-change, T decreases more than by an order of magnitude. At larger supercoolings, 7 is
independent of T’y again. This behavior agrees qualitatively with the theoretical consideration
of the phase separation kinetics at homogeneous nucleation taking into account the finiteness
of the cooling rate. The value of the surface tension has been obtained from comparison of
the theoretical results with the experimental one.

We start the presentation of this chapter from the recollection of the basic theoretical rela-
tions that will be necessary for interpreting the experimental data (Section 10.2).
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10.2  Homogeneous Nucleation in Mixtures: Theory 331

10.2 Homogeneous Nucleation in Mixtures: Theory

In Chapter 3 it was explained how homogeneous nucleation in a uniform supersaturated mix-
ture proceeds through the formation of clusters of the new phase at random sites. If the number
of particles in a cluster, n, is smaller than a certain critical value n., controlled by the com-
petition between the bulk and surface contributions to the thermodynamic potential, such a
cluster is unstable and it dissolves. When n > n, the cluster grows. For a spherical cluster in
a dilute and ideal binary mixture n. is given by

(B Y
e = (1n<co/cf>> ’ (10-h

where, in our case, cg is the initial >He concentration in the mixture (the concentration before
the supersaturation step), c; is the equilibrium *He concentration of the matrix at the cluster
boundary at the temperature 7' (after the supersaturation step), and the parameter 3 is given
by

8t oa’

8= 3 knl)’ (10.2)
where a is the atomic distance, which is determined by (47a®)/3 = (V,,/Na), here V,,, is the
molar volume and N 4 is the Avogadro number.

Both nucleation and the subsequent growth of the clusters are dependent on the quantity
J (n) characterizing the nucleation rate. J (n) is the flux in the space of cluster sizes n. It is
a very sharp exponential function of n, and J (n.) = Jy, which is the flux of the particles in
the new phase through the critical point in the space of sizes. It is of fundamental importance
in all calculations and can be written as (see Chapter 3 and [300, 337])

33\ AD (n,
Jo = (Qf) cZexp {k;;)} , (10.3)

where A® (n) is the change in the thermodynamic potential, when n particles of the initial
mixture transform into a cluster. In the approximation considered

A® (n) = nAp + dwaon?/3, (10.4)

and the difference between the chemical potentials is

Ap=kgThh <L, (10.5)
Co
Using Egs. (10.1), (10.2), and (10.5), we obtain
Jo=| — —_—, 10.6
0 (277) P T2 (co/cy) (100

the flux J is strongly dependent on the degree of supersaturation of the metastable mixture.
Assuming ¢ (T') = exp (—Q/kgT)) (which is quite a good approximation for dilute *He—*He
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mixtures) we obtain

38\"? 3 (kpTo\? 1
o=t (2) e |4 (BY L),

where @) is the effective heat of separation, 8y = ((Tp), and x = T /Ty (T is the phase
separation temperature of the mixture).

Although Jj is finite for all = different from 0 and 1, Eq. (10.7) suggests that for practically
any (3 there is a region of supercooling where .Jy, characterizing the nucleation rate, starts
changing by orders of magnitude under very slight variation of x. As a result, nucleation is
only observable in a narrow range of supersaturations; the process is unobservably slow at low
degrees of supersaturation and practically instantaneous when the degree of supersaturation is
high. This behavior permits us to introduce the concept of the highest cluster concentration
N,,,, which corresponds to the end of nucleation at a preassigned temperature and at the initial
supersaturation, when (Ac/cgp)n. =~ 1. The relative cluster concentration per lattice site
corresponding to this condition is [300]

3/4
Ny, = (4eg)/* (%) , (10.8)
and the nucleation time
1/4 2
4dcg a“cy
= = — 10.9
TN (ﬂgefo) D (10.9)

where D is the diffusion coefficient of *He in the decomposing mixture.
The nucleation stage ends at a certain critical concentration ¢, corresponding to the con-
dition [43]

(co —ce) Jeo = . (10.10)

Then, the stage of the diffusion or independent growth of the nuclei starts. The estimation for
the characteristic time of the cluster growth up to the stage of coarsening (Ostwald ripening)
is (Chapter 3, [300])

2 2
a” —1/3,,-2/3 . @ BN\ ;12

N — N o . 10.11

™D~ 3p‘o m 3D <cg> T ( )

As we see, N, is also responsible for the kinetics of the subsequent independent diffu-
sional growth of the clusters. According to Eq. (10.8), N,, is dependent on 3 and only one
unknown parameter o occurs in the expression for Jy. As soon as we know the cluster con-
centration, the interfacial tension coefficient can be estimated readily. This will be done in
Section 10.3.

One can assume that at the stage of independent diffusional growth of the nucleated clus-
ters, each nucleus of radius r can be conceptually placed into a spherical diffusion zone of
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mean radius B = «a /N},L/ 3 Then the characteristic time for the diffusional growth will be
equal to (see, e.g., [78])

1

™ =35 (10.12)
where ) is a solution of the transcendental equation

tan A(R —r) = AR. (10.13)
For

AMR—r) <1, (10.14)

tan A\(R —r) can be expanded in a series; not going beyond the cubic terms of this expansion,
we get

3z
2 _
where
r cop—C /3
i=p = (10_ 20) (10.16)

and c is the mean concentration of the impurity in the matrix. Equation (10.16) was obtained
by using the conservation law for impurities in the volume of a sphere of radius R.
Taking into account Eq. (10.15), we can write an expression for 7p as

2. (1_ )3 2 1—2)3 221/2 1—2)3
D — 3R—D( Z) = a 2/3 ( Z) = a ﬁl/G 1/2 ( Z) s (1017)
z 3DNy, z 3D (4co) 7 J, z
and, using Jy from Eq. (10.3), we find
1/442 (1 — )3 3
p= 2P 7/‘; (1-2) exp [ 26 ] , (10.18)
De} z 41n"(co/cy)
where
1/4
T ~ 0.32. (10.19)

* = 35/a91/12

Thus, for a known value of D, Eq. (10.18) can be used with values obtained for 7 to deter-
mine (3 and hence the surface tension o, which enters into it (Section 10.4).

As estimates show that the nucleation time, Eq. (10.9), is often quite short, 7v < 1 s.
It is therefore necessary in many cases to take into account the finiteness of the rate of the
temperature decrease. At rather small 75, the concentration ¢y in Eq. (10.5) becomes strongly
dependent on time. When the temperature is lowered, excess admixture concentration in the
matrix increases, so does the nucleation rate. The rate of the first process is decreasing with
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time, while the rate of the other process, which is conditioned by Jy, increases sharply. When
these rates become equal at a certain temperature 7™, this corresponds to the minimum of
AD/kpT, and T* is the temperature of intensive nucleation (IN).

For weak 3He—*He mixtures, one can assume, to a quite high accuracy, that the equilibrium
concentration is an exponential function of temperature

o(T) = e~ Q/ksT, (10.20)

In this approximation the equation for x = T* /T} found from the condition

d [ Ad
a4 (kBT_> _o, (10.21)
is given by
2/3 3 T\ 2 1 =
i exp 0 (’@ 0) )= (10.22)
(1—2) (xz—-1/3) 2 Q x(l—2x) T
where
kBTO D(; _ 1 8T
— B(T, -1 ,/ /2 d - — 2 (102
60 B( O)a ﬁ a2 B Tr TO It ( 0 3)

If Eq. (10.22) gives T > T, the IN occurs at T' = T™. If T* < T} or Eq. (10.22)
has no solution, the most IN occurs at T'y. Thus, the Ty (or T™) values actually dictate the
concentration of the new phase nuclei N,,, which, along with the diffusion coefficient, is
responsible for the phase separation kinetics as a whole. The investigation of the separation
kinetics as a function of T’ is one of the most reliable methods of testing the correspondence
between the processes occurring in the samples and the theory of homogeneous nucleation.
Section 10.5 describes the corresponding experiments and the obtained results.

10.3 Homogeneous Nucleation in *He-*He Solid Solutions:
Experiment and Comparison with Theory

The present section starts the analysis with a brief summary of bounded diffusion in NMR

experiments (Section 10.3.1); this overview is required for interpreting the experimental data.

The experimental cell and techniques are described in Section 10.3.2 (see also [317]). The

results are presented in Section 10.3.3 together with a discussion, within the framework of the
theory of homogeneous nucleation.

10.3.1 Spin Echoes in Restricted Geometry and Cluster Sizes

The key experimental result needed is the determination of the size of the new phase clusters
created upon phase formation. It is this parameter that permits us to find the concentration of
clusters NV, (calculated in the previous section) from particle conservation. In [317] the size
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of the droplets was estimated by the pulsed nuclear magnetic resonance (NMR), or spin-echo
method.

In segregated dilute mixtures the NMR transverse relaxation is influenced by the small size
of the new phase droplets. This dependence is most evident when diffusion is measured by
the spin-echo method, where the spin diffusion coefficient is found from the echo signal of the
sample placed in a magnetic field with a gradient GG after applying two or more resonant RF
pulses separated by an interval ¢*. With a conventional spin-echo pulse train 90° — ¢* — 180°,
the amplitude of the echo signal occurring at time 2¢* in a bulk sample can be expressed as

2
E (2t*) = exp (—572G2Dt*3> , (10.24)

where v is the gyromagnetic ratio. If, however, the sample size d is smaller than the spin
diffusion length v/ Dt*, the dependence E(t) becomes more complicated because the motion
is bounded. The description of this effect [190,211] resulted in inconvenient lengthy formulas,
which is difficult to use for processing experimental results. However, a simplification is
possible through the use of an approximate model.

It is evident that, so far as NMR is concerned, bounded diffusion in a field gradient is
equivalent to unbounded diffusion in a triangular field profile, the half-wavelength dimension
being d. If the triangular profile is now approximated by a sinusoidal variation then a relatively
simple expression for F(t) can be obtained:

22,12 2* * 2*
E(2t*):exp{—d VQG Tf[ ! +4exp <—t—> — exp (— ! )—3}}7 (10.25)
T T,

Te c Te

where 7. = d? / 72 D. Using numerical simulations, in [317] it was proven that Eq. (10.25)
gives results in good agreement with the exact expression for a spherical droplet [211]. It is
thus evident that through comparison of Eq. (10.25) with the experimental data, one can find
both the diffusion coefficient and the cluster size from this expression.

10.3.2 Experimental Details

The experimental cell is shown in Figure 10.2. The cell is supported on a copper cold finger
extending down from the experimental plate, which is in good thermal contact with the mixing
chamber of a dilution refrigerator. The cell is of modular design in three parts: the cold
finger and top third of the cell, the NMR coils in the middle, and the pressure gauge in the
bottom third. The copper cold finger is machined to a sharp point to encourage nucleation of
the crystal from the liquid mixture at this point. The bottom section of the cell contained a
pressure capacitive transducer of the Straty-Adams type.

Thermometry was provided by two Speer carbon resistance thermometers calibrated using
a *He melting curve thermometer and a germanium resistance thermometer (between 0.4 and
10 K). The sample mixture was made using standard volumetric techniques. *He came from
a cylinder and *He was added to make up the required concentration of (1.00 & 0.01)% from
evaporated liquid. The crystal was grown by forcing the mixture into the cell at high pressure
using a charcoal filled “bomb” in a *He transport Dewar (for more details see [317]).
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Figure 10.2: Schematic view of the experimental cell.

In order to produce a sample with a minimum of defects the crystals were grown at con-
stant pressure. The cold finger in the cell is cooled below the melting transition until solidi-
fication starts, indicated by a dropping pressure on the fill capillary. The nucleation point is
then stabilized at this temperature and the other end of the cell is held just above the melting
temperature. These conditions are maintained as the solid-liquid interface propagates through
the cell.

When the solidification was complete, the fill capillary heaters turned off and the 1-K
pot run fully, the refrigerator circulation was stopped and the mixing chamber temperature
regulated at 1.2 K for 180 h in order to anneal the crystal and reduce any inhomogeneities in
3He concentration. The sample was then cooled to 500 mK to start the measurements. The
pressure Py = 36 bar was independent of temperature below 0.6 K.

The NMR measurements were all made using a coherent pulse spectrometer. The exper-
imental procedure was as follows. The prepared and annealed sample was smoothly cooled
to a temperature close to the separation temperature Ty (7 = 186 mK for a 1% mixture).
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Then the temperature was lowered in steps and the spin-echo signal, and the pressure also,
were recorded. After the onset of phase separation, measurements were repeated at each step
until equilibrium was established. In the described experiments [317] the diffusion in the He
nuclei was measured at the lowest temperatures where nearly all *He was contained in the
new-phase droplets.

10.3.3 Results and Discussion

Figure 10.3 shows the reduced echo amplitude vs interval between the RF pulses. The de-
pendence was measured at different temperatures and magnetic field gradients after a chain
of successive coolings of the sample. According to Eq. (10.25), the dependence is univer-
sal if the echo signals are raised to the power (Go/GY, where Gy is an arbitrary refer-
ence gradient. The data in Figure 10.3 have been scaled in this way. The curve approx-
imates Eq. (10.25), whose parameters were estimated by the least-squares method to give
D =(4.9+0.3) x 107%cm? s! and d = 4.5 4 0.5 pm. The value of D agrees well with the
spin diffusion coefficients for a bulk sample [56,66,210], which suggests identical diffusion
processes in 3He clusters and in bulk 3He.

1.02: T, mK G, G/cm
VTV o 90  10.02
3 1009aisy o % 100
= - v 90 501
g 098¢ o 90 334
5 - e 90 835
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Figure 10.3: Dependence of the reduced echo-signal amplitude on the interval between the pulses at
different temperatures and magnetic field gradients. The curve is the least-squares approximation to the
results by Eq. (10.25). Data are presented for temperatures between 90 and 16 mK and field gradients
between 3.34 and 11.02 G /cm.

The concentration of clusters can be found readily from their sizes. Since d is measured at
quite low temperatures assuming that all >He is contained within the clusters, we obtain from
conservation of particles

7d® Ny 24 Vin

Tv—mNm = Cy and Nm =3.2x 10" P Co, (1026)
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where N 4 is the Avogadro number. Inserting these parameters, we obtain NV,;, = (8.4£0.8) x

1015, This result can be compared with Eq. (10.8) to estimate o.

Before estimating ¢ from Egs. (10.26) and (10.8), the following comments are appropriate
to be made:

(1) As mentioned in Section 10.3.2 the starting mixture for the sample contained 1% >He.
It should also be noted that the initial concentration can differ from that in the crystal
because of the isotope fractionation caused both by crystallization and by the desorption-
induced increase in pressure [317]. Therefore, the initial He concentration in the sample
is somewhat uncertain. This uncertainty has, however, no effect on the subsequent steps
for which the initial and final concentration (c; and cy, respectively) are both determined
by the phase diagram of the mixture. Possibilities for the refinement of ¢ are discussed
below.

(2) The clusters of the new phase whose sizes were measured in the experiment developed
after several successive stepwise coolings (some characteristics of the steps at which the
changes in the concentration become measurable are shown in Table 10.1). Basically, new
clusters can form at any step. Because of their low concentration at each step (~ 1071%),
we can assume that nucleation is an independent process and the experimental V,,, values
found at low temperatures may be taken as a sum of contributions from all the previous
steps.

Table 10.1: Main characteristics of experiments upon step-by-step lowering of the sample
temperature.®

No. Ty (mK)  cf (%) Tx107% Dx10° o* x N, X
(s) (cm?/s) 102(erg/em?) 101°

1 183 091 76.50 0.17 - -

2 171 0.64 30.24 0.24 1.30 8.8

3 161 0.46 5.40 0.35 1.25 <0.1

4 150 0.31 4.32 0.55 1.24 0.3

5 140 0.20 3.78 0.88 1.24 <0.1

6 130 0.12 3.66 1.40 1.24 <0.1

“The final concentration cy is calculated by Edwards and Balibar’s formula [63].

(3) The equations in Section 10.2 refer to the case when the mixture becomes segregated com-
pletely after one cooling step. At a multistep cooling, the expression for the nth step can
be derived rigorously by solving Egs. (43) in [300] for different starting conditions, tak-
ing into account the previously formed clusters. However, since nucleation takes a shorter
time than the diffusion growth and it proceeds independently (see above), the kinetics of
the cluster growth may be thought of as invariable, and the refinement of Eq. (10.11) is
reduced to substitution of (co — ¢y, P/% Je;, for co 3 (e 1, and ¢; are the final and initial
concentrations at the nth step, respectively). In the expressions for g (and Jy) ¢¢ should
also be replaced by c;,, .

Taking into account these comments, we can obtain from Eq. (10.8) the total N,, value

corresponding, within the error, to the experimental result 8.4 x 10715 if we used ¢ =
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1.27 x 10~ 2erg/cm?. The value of N,, for each step is presented in Table 10.1 (column 7).
It is seen that most clusters are formed at steps (2) and (4). In the calculation the number of
clusters at step (1) was assumed to be negligible. This is true for ¢y < 1.25%. The more
prolonged separation time at step (1) supports this assumption.

10.3.4 Conclusion

Nuclear magnetic resonance experiments studying the phase separation in dilute mixtures of
3He in *He show that the conditions for homogeneous nucleation can be realized in high-
quality crystals (due to their growth at constant pressure or to thermocycling in the two-phase
region). The main parameter of the theory, namely the interphase surface tension o of the
solid 3He—*He mixture was obtained. Realization of homogeneous nucleation in solid *He—
4He mixtures opens up new possibilities for the comprehensive quantitative correlation with
theory.

10.4 Kinetics of Phase Transition in Solid Solutions of ‘He
in *He at Different Degrees of Supersaturation

The present section is devoted to a study of the influence of the degree of supersaturation on
the rate of the phase transition in solid solutions of “He in >He and a comparison with theoret-
ical results [88]. It describes precision measurements of the pressure during phase separation
in a solid mixture of “He in 3He allowing us to obtain characteristic times of the phase de-
composition (Section 10.4.1). A processing of the measurement results (Section 10.4.2) gives
additional evidence supporting the view that homogeneous nucleation is realized in >He—*He
solid solutions at significant supercoolings and heterogeneous nucleation at the smallest su-
percoolings.

Two different ways are proposed for comparing the results with a theoretical calculation;
taking into account the processes at the boundary of a nucleus of the new phase. Both give
roughly similar values of the coefficient of surface tension at the nucleus—matrix boundary,
and those values agree with those obtained in other studies. It is conjectured that the bce—
hep transition has a substantial influence on the kinetics of phase separation at the lowest
supersaturations. The results are summarized in Section 10.4.3.

10.4.1 Experimental Results

In the described experiment the time dependence of the pressure in the samples of solid so-
lutions of *He in ®He was measured after cooling from the region of the stable homogeneous
state to various temperatures Ty below the phase separation temperature T5g of the initial so-
lution. The measurement techniques and the experimental setup are described in Section 10.3
and in detail in [78].

An important element of the previous experiments was the development of a technique
for obtaining homogeneous samples, making it possible to obtain practically equilibrium so-
lutions. Samples of solid helium in the form of a disk 9 mm in diameter and 1.5 mm in height
were located inside a metal chamber cooled by a dilution refrigerator. The samples were
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340 10 Phase Separation in Solid ® He—*He Mixtures

grown by the capillary blocking method from a gaseous mixture containing approximately
2% *He. The bottom of the chamber, which was ~1 mm thick, served as the movable plate of
a precision capacitive pressure gauge of the Straty-Adams type. The “*He concentration in the
sample was defined according to the value of the change in pressure upon complete separation,
APy, by Mullin’s formula [185]

v
APy = 0.4-"¢o(1 - ¢p), (10.27)
v
where 7 is the compressibility.

Table 10.2: Some characteristics of the samples studied.

Sample ¢ Py, (bar)  V, To(K) T*(K) o*x102 & x 102
no. (% “He) (cm®/mole) (erg/cm?)  (erg/cm?)
1 2.25 34.82 23.99 0.199 0.170 2.20 1.4

2 2.43 38.616 23.55 0.201 0.191 1.11 -

3 2.8 31.435 24.42 0.212 0.182 2.21 1.4

4 2.93 35.465 23.89 0.212 0.189 1.84 1.1

5 3.34 32.85 24.20 0.220 - - 1.2

¢ is the *He concentration, Py is the pressure, V), is the molar volume, T’ is the
phase separation temperature of the initial solution, 7™ is the temperature of
intensive nucleation, and o™ and & are the coefficients of interfacial tension found
by different methods.

10.4.2 Discussion

As in the majority of previously studied situations, the time dependence of the pressure in the
sample upon a stepwise lowering of the temperature in the phase separation region is described
well by an exponential function of the form

P — P(t) = APy, exp (i) , (10.28)

where AP,, = Py — P; is the difference of the equilibrium values of the final pressure Py and
initial pressure P;, and 7 is the characteristic time for establishment of equilibrium at the step
under consideration.

The primary data for one of the samples are presented in Figure 10.4, which shows the
time dependence of the pressure AP = P(t) — P, for different values of T. All of the curves
are described satisfactorily by Eq. (10.28), and the time 7 decreases noticeably at large T and
becomes practically independent of T’y for Ty < 160 mK. This result is more clearly seen in
Figure 10.5, where the values of 7 for all the samples are plotted as a function of the relative
supercooling AT /T, (AT =T, — T}).

At small supercoolings (AT < 20 mK) the characteristic times turn out to be extremely
long (up to 10*s), and they decrease rapidly with increasing AT to values of the order of
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500-700 s, and at AT > 50 mK they become practically independent of the degree of super-
cooling. This behavior agrees qualitatively with what is expected under conditions of homo-
geneous nucleation. According to Eq. (10.27), the change in pressure is uniquely related to
the change in concentration, and the found times 7 characterize the progress of the diffusion
process in the presence of separation, which is governed by a time 7p ~ R?/D ~ N,Z,Q/ *p-1
(see Section 10.2). The concentration of nuclei IV, in the presence of separation grows

0.08 160 mK
I 179 mK
0.06 |-
s - 191 mK
o
Ay 0.04
0.02 H 204 mK
O | 1 | 1 | 1 | 1 | 1
0 1 2 3 4 5 6
£ h

Figure 10.4: Time dependence of the change in pressure in *He—*He upon cooling from the region of
the homogeneous solution to different temperatures 7, indicated in the figure [88].
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Figure 10.5: Characteristic times 7 vs relative supercooling for all the samples studied (indicated in the
figure) [88].
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342 10 Phase Separation in Solid ® He—*He Mixtures

sharply with increasing degree of supersaturation (supercooling) (see Eqs. (10.8), (10.9)), and
that brings about a corresponding decrease of 7.
The ultimate plateauing of 7 can be caused by several reasons:

1. At short diffusion times the impurity atoms at the nucleus—matrix boundary have a resis-
tance to transition characterized by a time 7, which is practically independent of 7" at
low temperatures [81, 89].

2. As was shown in [79,312], at a finite rate of cooling, when it is necessary to take into
account the change of the concentration ¢y with time, one can introduce the concept
of the temperature of intensive nucleation, 7, at which the decrease of the degree of
supersaturation € = ¢(t) — cy(t) due to the decrease of the matrix concentration c(t)
with time owing to the escape of admixture into the new-phase nuclei is comparable to
the increase in ¢ due to the decrease of c¢(t). The value of T becomes the determining
factor specifying the concentration of nuclei, and decreasing T’y further does not alter the
value of N,,, and, hence, of 7 for a sufficiently weak temperature dependence of D(T').

3. The minimum times 7 found are close to the characteristic times for establishment of a
given temperature.

4. With decreasing 7" a fundamental circumstance can come into play: at sufficiently high
supersaturations the number of atoms in a nucleus becomes of the order of 1. This fact
implies that the macroscopic approach described in Section 10.2 will not be applicable
under these conditions, and there is probably a change of nucleation mechanism.

Apparently, the most probable cause of the plateauing of 7 with increasing supersaturation is
a combination of the first two factors.

The time for establishment of an equilibrium temperature was practically always less than
the experimental values of 7. It was shown in [89] that under condition (10.14) the measured
characteristic time for the influence of the boundary resistance to be noticeable can be written
in the form

r=Tp+Ts, (10.29)
where 7p as before is described by Eq. (10.17), and

R 1- 23
3K 22
where K is a constant characterizing the probability of penetration of an impurity through the
boundary of a nucleus. If Ty < T, then R ceases to depend on T, and then the expression

) (10.30)

Ts

~ 22 R (1-2)32 R

T

"T-2 3D 1-28 3K’

obtained by substituting Egs. (10.15) and (10.30) into Eq. (10.29), will be a constant.
Equation (10.31) can be used to estimate 7™ as the temperature starting with which the

left-hand side of this formula becomes independent of T’s. The value of R here is figured as

the minimum value of R,,, corresponding to the temperature 7. For determining the values

(10.31)
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of T"* and R,, a plot was constructed in [88] showing the dependence of 7 vs Ty according to
Eq. (10.31) (see Figure 10.6). In the construction the value K = 2.7 x 10~%cm/s from [89]
was used, while the values of the diffusion coefficient D obtained in [89] were adjusted to the
molar volumes of the samples studied. From the values of 7 in the plateau region, one can use
Eq. (10.30) to estimate the experimental value of R, corresponding to the concentration of
nuclei formed at the temperature 7™ (see Table 10.2) and compare it with the calculated value,

u a 5*3
. _ N | 10.32
=~ g p[&n%co/cw] o

where the asterisk denotes values corresponding to the temperature 7*. Such a comparison
makes it possible to determine the parameter 3 and the surface tension o, which enters into 3.
The values thus found are listed in Table 10.2 as o*. The noticeable scatter of the values of o*
for different samples is most likely due to an inaccuracy of the purely visual estimate of 7
from the plot in Figure 10.6.

700 Samples: o
600: o —NO. 1
- e —No.4
500
« 400 °
w -
300
200
r °
100 |- o ®
i .?. I 1 I ..I Q:m°.8.go :
0.10 0.12 0.14 0.16 0.18 0.20
K

Figure 10.6: Dependence of the reduced time 7 (see the text) on the final temperature of the *He—*He
samples.

The concentrations of the studied five samples ranged from 2.2 to 3.35% “He. Note that for
all the samples the experimental values of the separation temperature corresponded within the
error limits to those calculated according to the formulas of [63]. Some of the characteristics
of the samples studied are presented in Table 10.2.

The data obtained at medium supersaturations, i.e., for T > T, can also be used for an
estimate of o. Equation (10.29), written in the form

CRP(1-2°% R1-2°

T R

3D 2 3K 22 7 (10.33)

can be considered to be an equation for finding R and can thus be used with the measured
values of 7(T) to determine R(T';) and, with the use of Eq. (10.32), the surface tension o.
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344 10 Phase Separation in Solid ® He—*He Mixtures

The values of o thus obtained, averaged for the different T, are listed in Table 10.2 as &.
The difference of the mean values of the surface tension (0* = 1.8 x 1072 elrg/cm2 and
7 =13x10"2 erg/ cm?) estimated by the two methods is about 20%. An averaging of all
the data gives a value o = 1.5 x 10~ 2erg/ cm?, practically the same as the results of previous
estimates [81, 89].

Curious features of the time dependence of the pressure difference are observed at the
lowest supersaturations (Figure 10.7): the total time for establishment of equilibrium turns
out to be very long there, and the AP(t) curves display noticeable irregularities. Since the
probability of homogeneous nucleation at such low supersaturations is very small, it can be
assumed that heterogeneous nucleation becomes the governing process.

0.02f ;
-
O
%001— 2
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 4 8 12
t, h

Figure 10.7: Time dependence of the change in pressure at very low degrees of supersaturation for
samples no. 1 (curve 2) and no. 3 (curve 7).

If heterogeneous nucleation occurs on the wall of the cell, then the change in the mean
concentration (and, hence, the pressure) should correspond to the solution of the diffusion
problem for a sample situated between two planes and is described by the expression (see,
e.g., [264])

N

1 1 w2 Dt
AP =AP, |1—- — S - o+ 1)? 10.34
aNT;)(Qn—i-l)zeXp( d? (2n+ )> ’ ( )

where
N 1

=N 10.35
an n; TERE (10.35)

d is the distance between planes and N is the number of terms in the sum.

A processing of the curves in Figure 10.7 with Eq. (10.34) shows that the use of 3 or
4 terms of the sum decreases the rms deviation § by more than a factor of 3 compared to
processing with the use of a single exponential, and increasing /N further has little effect on
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the value of 4. We note that Eq. (10.34) differs from the analogous formula for a spherical
geometry (see, e.g., [78]) by a significantly slower decrease of the successive terms of the
sum. The relaxation time 7 = d? / 72D obtained here is of the order of 4 x 10% s, and when
the height of the cell is substituted in 7 for d one obtains a value D ~ 5 x 10~% c¢m? /s for the
diffusion coefficient, which agrees with the data obtained in [89]. This fact argues strongly in
favor of heterogeneous nucleation under these conditions.

The irregularity of the curves in Figure 10.7 may be due to the formation, at low supersat-
urations, of new-phase nuclei with a bee structure, which later transforms to the hep structure.
A similar phenomenon has been observed [165] in the crystallization of “He in the region of
the triple point. This possibility is also supported by the fact, registered in X-ray studies of the
decomposition of the solutions, that a nonequilibrium bcc structure of the new phase persists
to temperatures of about 100 mK [64].

10.4.3 Conclusion

In this section we have reported measurements of the characteristic times for the diffusional
decomposition of solid solutions of *He in *He. The results of the experiments were compared
with theoretical calculations of the parameters of homogeneous nucleation under conditions
of a finite resistance at the nucleus—matrix boundary. On the basis of that comparison the
value of the coefficient of interphase surface tension was estimated by two methods.

The closeness of the surface-tension results obtained by different methods and their good
agreement with values of o found previously [89] (see also [317]) furnish additional evidence
for the realization of conditions for homogeneous nucleation in perfect samples of *He—3He
solid solutions. However, for a final answer to this question it will be necessary to do more
careful and systematic studies to minimize if not eliminate the errors existing in the present
treatment, viz:

(a) the approximate character of Eqs. (10.29) and (10.31), which are based on an expansion

of Eq. (10.13), because of the proximity of A(R — ) to 1;

(b) insufficient accuracy of the estimate of 7, owing to the small number of experimental
points;

(c) possible errors in bringing in the parameters D and K from [89] (it would be desirable to
measure them in the same experiment);

(d) possible influence of heterogeneous nucleation and a bcc—hcp transition, especially at low
supersaturations.

Experiments with these circumstances taken into account will make it possible to perform

a more quantitative comparison with the results of the theory of homogeneous nucleation,

extended to the situation with a finite rate of supercooling [312], and to trace the transition

from heterogeneous to homogeneous nucleation in “He—>He solutions.
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10.5 Influence of the Degree of Supercooling on the
Kinetics of Phase Separation in Solid Mixtures of
‘He in 3He

In this section the kinetics of phase separation in the solid mixture of “He in 3He is studied
at various degrees of supercooling in the temperature range of 100200 mK through precise
pressure measurements [202]. The time dependences of the pressure change during phase sep-
aration were found to be exponential. At small supercoolings the characteristic time constant
7 is almost independent of the final temperature 7'y and is about 10 h, which is considered
to result from heterogeneous nucleation. In a narrow range of T the time 7 decreases more
than by an order of magnitude. At larger supercoolings, 7 is again independent of T’. This
behavior agrees qualitatively with the theoretical considerations of the phase separation kinet-
ics at homogeneous nucleation taking into account the finite value of the cooling rate. The
value of interphase surface tension has been obtained from comparison of the theory with the
experimental results.

The time dependences of the pressure in the solid *He—*He mixtures were measured after
the samples had been cooled to different temperatures T’ in the phase separation region. The
measurement technique and experimental setup are described in [82]. The solid helium sam-
ples were located inside a metallic ampoule shaped as a disk 9 mm in the inner diameter and
1.5 mm high. The samples were prepared from a gas mixture (~ 2% “He) through blocking
the capillary. Some experimental dependences P(t) measured at different T’ are shown in
Figure 10.8.

Note the following features in Figure 10.8:

(i) The dependences taken at Ty < 170 mK are well described by the exponential depen-
dences Py — P(t) = (Py — Py) exp (—t/7), where Py is equilibrium pressure at T.
(ii) At a very low supersaturation the dependence P(t) becomes more complicated and its
processing through the use of the exponential gives 7 about 10 h.
(iii) AtTy < 150 mK, 7 is practically constant.
(iv) The obtained values of 7 decrease sharply as T’y goes below 170 mK.

At intermediate supercoolings the behavior of 7 vs AT /Ty (Figure 10.9) agrees quali-
tatively with what is expected in the context of homogeneous nucleation (see Section 10.2)
and the subsequent diffusion growth of the “He-enriched phase nuclei. The values of o, cited
in the caption to Figure 10.9 as well as in the text and Table 10.3, are corrected as com-
pared with [202] because of different definitions of a in [202] and this chapter. It is seen
from Eq. (10.11) that 7 is dependent on two unknown parameters D and o. Using the ratio
7p /TN, we can exclude D and estimate o. At quite low 7, we can write

de

- 10.36
&), TN, ( )

t;

Co — Cc =

where ¢; corresponds to the time moment when T = T; (T; = T when T* > Ty and T; = T
when 7™ < T%). Using Eq. (10.2), we obtain

_ ¢ I (co/c*) APy In®(co/c”)
TN = 7(dco/dt) 33 (OT*) - (dP/(it) 33 (OT*) ) (10.37)
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Figure 10.8: The typical kinetics of phase separation at various T%. (a) 175 mK; (b) 165 mK;
(c) 150 mK. The time axis corresponds to the laboratory time and absolute values of time are of no
consequence.

where AP, is the change in the pressure caused by the separation of the mixture with the
concentration ¢q into pure components. On finding the ratio 7 /7 from Egs. (10.9), (10.11)
and using Egs. (10.6) and (10.37), we obtain

0.62¢; In® (co/c;) AP, 1 B3(Ty)
™D~ 5/4 0158 ap ex
CO ﬁ / E‘t=ti

8 1n (co/c2) (10.38)
where ¢; = ¢(T;) is the equilibrium concentration at 7;. Using Eq. (10.38), we can find o
from the experimental data for the intermediate supercooling.

The values of o for different T are in good agreement with one another. The average
value of o = 1.43 x 1072 erg/cm? is quite close to those taken at the boundary between the
solution and a *He cluster [167].

Of interest is the fact that Eq. (10.38) has no solution at Ty < 100 mK. This might be
because Ty < T™. Another and more fundamental reason is the following. If the size of the
critical nucleus is estimated from the calculated o, we obtain n, < 10 at Ty < 160 mK.
Under these circumstances it is problematic to use the macroscopic approach described in
Section 10.2.

At small supercoolings, the concentration of the nuclei formed according to Eq. (10.8) is
not sufficient to explain the observed values of 7p, Eq. (10.9). It is natural to expect that the
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Figure 10.9: Characteristic time constant 7 vs AT /Ty for different samples: (O) ¢y = 2.8% *He
Py = 31.5bar; (O) co = 2.2% *He, Py = 34.8 bar; (A) co = 2.93% *He Py = 35.5 bar. Solid lines
correspond to the calculation with Eq. (10.38) at APy = 0.074 bar, dP/dt|,_, =2 x 107° bar/s:
(Do =1.1x10"%erg/ecm?; (2) 0 = 1.36 x 1072 erg/cm?; (3) 0 = 1.6 x 1072 erg/cm.

Table 10.3: Comparison of the results on interfacial surface tension in phase separated *He—*He mix-
tures in different experiments.

Coexisting phases Basic parameters or o x 10> Reference
dependences used to (erg/cm?)
estimate o

3He-rich cluster — Cluster concentration 1.27 [317]

4He matrix

3He-rich cluster — Separation time 1.26 [317]

“He matrix

4He-rich cluster — Pressure variation 1.5 [88]

3He matrix

4He-rich cluster — T VS supersaturation 1.43¢ [202]

3He matrix

4He cluster around Pressure variation during 1.48¢ [166]

vacancy in >He thermocycling

matrix

“These values are corrected as compared with [202] and [166] because the
definition of a differs from that in the theoretical consideration [300].
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contribution of heterogeneous nucleation becomes appreciable. The experimental nonmono-
tonic dependence P (t) can be accounted for by the presence of several types of heterogeneous
nucleation centers.

The values of 7 corresponding to the lowest T’y are dependent on the simultaneous influ-
ence of several factors: (i) in this situation T < T™; (ii) values of n, are very small (< 10);
(iii) 7p is close to the time of reaching the stabilization temperature. Finally, these factors
lead to the observed 7p-independence of T'.

This section has actually revealed a significant effect of the degree of supercooling upon
the phase separation kinetics. We observed a transition from heterogeneous nucleation at
small supercooling to homogeneous when supercooling is larger. A procedure is proposed to
take into account the influence of finiteness of the cooling rate upon the concentration of the
new phase nuclei. The surface tension at the nucleus boundary is found from a comparison of
the experimental and the calculated data to be o ~ 1.43 x 1072 erg/cm?.

10.6 Comparison between Experiments and Conclusions

It is worthwhile to compare the above results between them and with those of other experi-
ments on the kinetics of phase separation in solid *He—*He mixtures. Experiments have been
also performed on dilute *He—3He mixtures in [166,202], where phase separation leads to the
formation of nearly pure “He inclusions in the nearly pure *He matrix. The kinetics of phase
transitions in solid He was also studied in [317] by pressure measurements. The data obtained
are summarized in Table 10.3 along with the results of this chapter.

In [202] the kinetics of phase separation was investigated at different supercoolings of the
mixture, AT = T; — T} , in the two-phase region. At low AT the separation time constant
is, as expected, high and almost independent of T's, which is due to heterogeneous nucleation.
At high AT, 7 is small and T'-independent again, and 7 increases sharply with growing T’
only in a narrow region of AT. This behavior is consistent with the theory of homogeneous
nucleation. The o data (interfacial tension) are presented in Table 10.3.

Phase separation in dilute “‘He—*He mixtures produces different systems [166]. Here tem-
perature cycling of a two-phase crystal leads to the formation of a vacancy cluster in the region
of separation, which consists of ordered “He atoms arranged around a vacancy. In this case
the pressure variation in the crystal is determined by the change in the cluster radius, and we
can thus estimate ¢ as a fitting parameter from experimental results (see Table 10.3).

The interphase surface tension coefficients of [202] and [166] are in good agreement (Ta-
ble 10.3), and they exceed the o of [317] only by 15-20%. If we take this distinction as real,
it could be related to the difference in the cluster density between the “He or 3He-enriched
phases. In experiments [317], for the first time the main parameter of the theory, namely the
interphase surface tension of the solid *He—*He mixture, was obtained through two indepen-
dent experiments, bounded diffusion measurements and measurements of the separation time
constant. Their values obtained in different experiments within the homogeneous nucleation
model are in good agreement (Table 10.3). The similarity of the above results supports the
validity of the methods used. The calculated o is about 1.6 times lower than the measured
value for segregated liquid mixtures [194]. It is possible that in this case the lower o values
are determined by the small sizes of the new phase clusters and the vacancy clusters.
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Phase separation in solid helium isotope mixtures is an example of a first-order transition
with a conserved order parameter. This system is attractive because the separation process oc-
curs on an accessible time scale: slower than that in fluids, but faster than that in conventional
solids. This is a consequence of the unique nature of the atomic motion in solid helium, where
quantum exchange results in a temperature-independent diffusion coefficient, intermediate be-
tween that of a solid and a liquid [173]. The time scales in *He—*He are such that all three
stages of the first-order phase transition (nucleation, independent growth and coarsening) may
be identified distinctly.

The first observation of all the three stages of homogeneous nucleation and growth in this
system was reported in [203]. The experimental approach [202, 317], already described in
Section 10.3, involves the simultaneous use of two powerful tools: NMR and high precision
pressure measurements, utilized during stepwise cooling through the transition and allowing
the observation of phase separation in real time.

As shown in Chapter 4, during the late-stage growth, or coarsening, the droplet size is
predicted to increase with a characteristic power law () ~ ¢* [173], where the exponent a
depends on the “universality class” of the transition. To investigate the coarsening, in [203]
the 2%>He—*He crystal was quenched from above the separation down to 100 mK and the
size of droplets was followed using NMR. The initial droplet size was 8 pym. The evolution
of [ with time is shown in Figure 10.10, where 1/I is plotted against 1/ t'/3. The asymptotic
late-stage behavior is indicated on the left-hand side where the approach to linearity indicates
the characteristic exponent a = 1/3, in accordance with the Lifshitz—Slezov law for a process
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Figure 10.10: Coarsening at phase separation in 2%>He—*He system [203].
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with a conserved order parameter (Chapter 4),

4 ve 1/3
It) = <§ kBOZO“UDt> , (10.39)

where v is the atomic volume and c., is the equilibrium concentration of *He in the di-
Iute phase. The slope of the asymptote of Figure 10.10 is found in [203] to be equal to
1.09 x 107s'/3m~1. Thus, the final, coarsening, stage of the phase separation process was
also observed in 3He—*He mixtures.
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11 Nucleation versus Spinodal Decomposition in Confined
Binary Solutions

11.1 Introduction

Nucleation and spinodal decomposition are two major mechanisms how first-order phase tran-
sitions may proceed in a variety of systems [14,33,44,45,71,93,256,272,273,337]. Which
one of the mentioned mechanisms dominates in the decomposition process is commonly as-
sumed to depend on the degree of instability of the initial state of a phase-separating system.
The phase transition is supposed to proceed via nucleation and growth for metastable sys-
tems [71, 337], while for thermodynamically unstable systems the mechanism of spinodal
decomposition is expected to govern the process [33,44,45,272].

Following the basic ideas anticipated in its basic premises already by Gibbs [85], in nucle-
ation a nucleus of initially small size is supposed to be formed stochastically with state param-
eters widely similar to the properties of the newly evolving macroscopic phases. In contrast,
spinodal decomposition is characterized initially by smooth changes of the state parameters
of the system (composition, density, etc.) extended, in general, over large regions in space.
These differences in the basic models lead to essentially different theoretical approaches to the
description of nucleation—growth and spinodal decomposition processes, respectively. In the
simplest formulation, spinodal decomposition is treated as a process of spontaneous growth of
a set of long-wavelength fluctuations of the density or composition of the initial state [44,45].
In such description, the growth increment of these fluctuations is determined in dependence
on the wavenumbers of the respective modes as performed for the first time by Cahn and
Hilliard [44,45]. In the decay of initially metastable states via nucleation, the bulk properties
of the clusters are supposed to be widely similar to the properties of the respective macro-
scopic phases [85] and the process of stochastic formation, the further growth and shrinkage
of such clusters is analyzed. Briefly speaking, in the initial stages of spinodal decomposition
the change of density and/or composition is determined for a more or less fixed size of the
new phase regions, while nucleation—growth models draw the attention to a change of the size
of the clusters at given values of their intensive state parameters.

Historically, the mentioned different approaches have been developed employing (or rein-
venting) two different thermodynamic methods of description of thermodynamically hetero-
geneous systems developed by Gibbs [85] (nucleation) and van der Waals [214,333] (spinodal
decomposition), respectively. The classical Gibbs’ theory was and is employed till now as the
most frequently used tool basically for the determination of the properties of critical clus-
ters determining the rate of cluster formation in metastable systems and, employing more or
less explicitly expressed additional assumptions, to cluster growth and shrinkage processes
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354 11 Nucleation versus Spinodal Decomposition in Confined Binary Solutions

(cf. [249,253,254]). Gibbs’ classical approach cannot give any predictions about phase for-
mation processes evolving in unstable initial states. In contrast, the van der Waals & Cahn—
Hilliard approach allows one to determine the properties of critical clusters for metastable
systems and the modes of highest density amplification for phase separation in unstable initial
states.

Both Gibbs’ and van der Waals’ methods of description of heterogeneous systems are
hereby conventionally considered as essentially correct and equivalent. However, as shown
already long ago by Cahn and Hilliard [44], the predictions concerning the properties of
critical clusters in metastable systems derived via the Gibbs and van der Waals methods
are in deep contradiction to each other (for more details see [249, 254]). These contra-
dictions are especially significant in the vicinity of the classical spinodal curve separating
metastable from unstable initial states. In addition, the above-mentioned comparison of simi-
larities and differences of nucleation and spinodal decomposition processes is somewhat over-
simplified. Modern theories of both spinodal decomposition and nucleation exhibit more
complicated features in comparison to the models as described briefly above (see, for ex-
ample, [28, 33, 35, 93, 146, 147, 254, 272]). Moreover, in contrast to the classical picture a
smooth transition from metastability to instability has been observed both in computer models
of phase-separating systems [28,33,35,93] and in experiment [263].

In the papers [249,254], it was shown that the contradictions between Gibbs’ and van der
Waals’ methods of description of thermodynamically heterogeneous systems in application
to phase formation processes can be resolved by generalizing Gibbs’ approach. In this gen-
eralization (for details see [258,259]), Gibbs’ idealized cluster model is employed again for
the theoretical treatment of density or composition fluctuations; however, the basic equations
are generalized allowing one to consider, in contrast to Gibbs’ classical approach, the inter-
facial tension, in general, as a function of the state parameters of both ambient and cluster
phases. It was shown that this generalization of Gibbs’ approach leads, in addition to a variety
of other consequences, to the reconciliation of both the mentioned thermodynamic methods
of description of heterogeneous systems. Moreover, the generalized Gibbs method is shown
to allow one to also arrive at an understanding of basic features of the kinetics of spinodal
decomposition [3].

In the present chapter, we first consider spinodal decomposition in solid solutions based
on the classical Cahn—Hilliard—Cook approach [44, 54]. However, in generalization of the
mentioned theories, we assume that the system is adiabatically closed (see also [162,177,235,
238]). For this reason, in the course of evolution of the phase separation process a feedback
of the phase transformation kinetics on the state of the ambient phase occurs with the change
of the temperature of the system. As will be shown the existence of such feedback leads to
a similar general scenario of the transformation kinetics as compared with cluster formation
and growth and to self-similarity of the final stage of evolution.

The main attention here is directed, however, to another problem. It is shown that basic
features of spinodal decomposition, on one side, and nucleation, on the other side, and the
transition between both mechanisms can be treated within the framework of above-described
generalized thermodynamic cluster model [3,254]. Hereby the clusters, representing the den-
sity or composition variations in the system, may change with time both in size and in their
intensive state parameters (density and composition, for example). In the first part of the anal-
ysis, we consider phase separation processes in dependence on the initial state of the system
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11.2  Spinodal Decomposition in Adiabatically Isolated Systems 355

for the case when changes of the state parameters of the ambient system due to the evolution
of the clusters can be neglected as this is the case for cluster formation in an infinite system.
As a next step, the effect of changes of the state parameters on cluster evolution is analyzed.
Such depletion effects are of importance both for the analysis of phase formation in confined
systems [33, 84, 189,205,222,262,266,331] and for understanding of the evolution of ensem-
bles of clusters in large (in the limit infinite) systems [229,230,233,234,331]. The results of
the thermodynamic analysis are employed in both cases to exhibit the effect of thermodynamic
constraints on the dynamics of phase separation processes. As a model system for the analysis,
we again consider phase separation in a binary regular solution, (see also [25,249,254]).

The chapter is organized as follows. In Section 11.2, spinodal decomposition in adiabat-
ically closed systems is analyzed. In Section 11.3, basic equations employed for the thermo-
dynamic analysis of phase separation in solutions in terms of the generalized Gibbs approach
are summarized. In Section 11.4, these results are applied to the analysis of phase formation
in infinite domains in the sense as specified above. In Section 11.5, finite size effects in the
kinetics are studied both in application to phase separation in systems of finite size and with
respect to the understanding of the evolution in macroscopic systems described in terms of
formation and competitive growth of ensembles of clusters [155,331]. A discussion of the
results and possible further developments in Section 11.6 completes the chapter.

11.2 Spinodal Decomposition in Adiabatically Isolated
Systems

11.2.1 The Cahn-Hilliard—-Cook Equation

Following van der Waals ( [333], see also Rowlinson [214], Cahn and Hilliard [44]) the free
enthalpy G of a binary inhomogeneous solution can be written in a first approximation in the
form

G:/[g(c)+n(Vc)2] dv. (11.1)

Here c is the volume concentration of one of the components in the solution, again, g(c) is the
volume density of the free enthalpy, and x (x > 0) a coefficient describing the contributions
to the thermodynamic potential due to the inhomogeneities in the system.

If the deviations from the initial homogeneous concentration ¢ are relatively small, then
a Taylor expansion of Eq. (11.1) results in the following expression for the change of the free
enthalpy connected with the evolution of the concentration field ¢(r, t):

1/06°

In agreement with the thermodynamic stability conditions (see, e.g., Kubo [133]), a sponta-
neous growth of the density fluctuations takes place only for g” (¢, T') < 0, since only in this
case the amplification of the density profile may be accompanied by a decrease of the free
enthalpy of the system.
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356 11 Nucleation versus Spinodal Decomposition in Confined Binary Solutions

In the framework of the Cahn—Hilliard—-Cook theory, the kinetics of the decomposition
process is described by a generalized diffusion equation connecting the variations in the ther-
modynamic potential G with the kinetics of the decomposition process [44, 54]. It follows
from the set of equations

dc .. L.
CoHdivj=0,  j=jp+ia. (11.3)
ot
5
ip = vaéff, ja = —VA(r,t) (11.4)

and has the form

% = Mg" (co, T)V?c(r,t) — 2MrVc(r,t) + V2 A(r, 1), (11.5)
where jp is the vector describing the deterministically determined density of fluxes of parti-
cles, ja represents the flow connected with the fluctuating scalar field A(r,t) superimposed
on the deterministic flow, and M is a mobility coefficient.

For a solution of this equation, the ¢(r, t) and A(r, t) fields are expressed through Fourier
expansions via

rt) = o+ Sl t) exp ikt (11.6)
Sk, t) = % / le(r, 1) — co] exp (—ik,r) dr, (11.7)
Aet) =3 Bk, t) exp (ik,r) (11.8)
B, ) = %/A(r,t)exp(—iknr) dr. (11.9)

Here V is the volume of the system under consideration.
Equations (11.3)—(11.9) result in the following differential equation for the spectral func-
tion S'(ky,, t):
05 (k,t)
ot
where the amplification factor R(k,t) is determined by

= R(k,t)S(k,t) — k?B(k, 1), (11.10)

R(k,t) = —MK? [¢"(co, T) + 2kKk?] . (11.11)

The subscript n in k,, is omitted here and subsequently for simplicity of the notations.

Based on Eq. (11.11), in analogy with the critical cluster size in nucleation a critical
wavenumber k. may be introduced. It is defined by the condition that the deterministic am-
plification rate R(k., t) is equal to zero. This condition yields

C

1
kK2=——¢"(co,T). 11.12
2’%9 (007 ) ( )
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11.2  Spinodal Decomposition in Adiabatically Isolated Systems 357

Concentration waves in the Fourier spectrum with wavenumbers k > k. decay while the
modes with k < k. grow. The value of the wavenumber corresponding to the highest amplifi-
cation rate is given by

1
kmax = =
V2

Moreover, in experimental studies of phase transformation processes not only the spectral
function itself but a quantity proportional to the average of the square of the spectral function
(S?) = (5S*) is of relevance. Assuming that in the average the concentration fluctuations are
equal to zero and uncorrelated

ke. (11.13)

(A(t)) =0, (A AMN)) = Q(k)d(§ — x) (11.14)
we get (see, e.g., [162])

w =2R(k,t)(S?*(k, 1)) + k*'Q(k), (11.15)

Q(k)=%%- (11.16)

Finally, by introducing dimensionless wavenumbers k£ and a dimensionless time scale ¢
via

~ 4rM

k=ak, t=-—pt (11.17)
a

we obtain with Eq. (11.12)

%%ﬂ :752{[753 R (82 (R D) +

2
kpTa } (11.18)

2kV

The parameter a is a measure of the intermolecular distance in the solution.

11.2.2 Thermodynamic Aspects

The process of spinodal decomposition is considered conventionally by assuming that the tem-
perature in the system remains constant in the course of the decomposition process. However,
both from a principal point of view and with respect to a number of possible technological
applications an important question is, how is the picture changed if isothermal conditions are
replaced by the constraint of an adiabatic closure of the system.

Under the condition of an adiabatic closure, the latent heat of the transformation results
in an increase of the temperature in the system and, consequently, modifications of the de-
composition kinetics are expected to occur. This qualitative difference is due to the fact that
the critical wavenumber becomes temperature and thus time dependent and decreases with
increasing temperature, respectively, increasing degree of advancement of the decomposition
process. In this way, nonlinearities enter the description already in the framework of the linear
Cahn-Hilliard—Cook theory.
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358 11 Nucleation versus Spinodal Decomposition in Confined Binary Solutions

The aim of the present section consists in the analysis of these modifications and the char-
acterization of the whole course of spinodal decomposition in adiabatically isolated systems.
Since we are interested mainly in qualitative results, we here restrict ourselves to a description
of spinodal decomposition at the level of the Cahn—Hilliard—Cook theory to reveal the specific
role of the nonlinearity arising from the chosen boundary conditions. The results obtained in
the framework of the Cahn—Hilliard—Cook theory for isothermal systems serve as a reference
for the variations caused by the temperature changes in the system. Moreover, the system,
where the transformation occurs is assumed to be a binary regular solution as discussed by
Becker [25], Cahn and Hilliard [44]. Heat conduction processes inside the system are consid-
ered to proceed fast as compared with diffusional fluxes. In this way, at any moment of time
an internal thermal equilibrium is established.

The free enthalpy g* and the potential energy u* (both quantities referred to one particle)
of a regular solution can be expressed as (cf. [25,44])

g =wr(1—2)+kgT[zlne+ (1 —2)In(l — 2)] + £*(Vz)?, (11.19)

u* = wz(l —z) + 5 (V)2 (11.20)
The molar fraction x in Egs. (11.19) and (11.20) can be replaced by the volume concentration
cvia

T==, == (11.21)

Here N is the total number of particles and V' the volume of the solution.
The change in the temperature of the adiabatically isolated system due to the evolution of
the concentration field ¢(r, t) can be expressed as [235]

AT = ﬁ / {w(c — )= k[V(c— co)]Q} dv. (11.22)

Here Cj is the specific heat per particle of the solution and the notations

w=" k= (11.23)
Ct Ct
are used.
In terms of the spectral function .S the temperature variations may be written as
Vw 1
AT = k,t))*(1-=a’k?). 11.24
(o) S 1stor (150 (1124)
Hereby the relation
Loy
K= Fwa (11.25)

was used in addition, valid for the considered regular solutions [44]. The parameter a in
Eq. (11.25) is, as previously, a measure of the intermolecular distance in the solution.
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11.2  Spinodal Decomposition in Adiabatically Isolated Systems 359

It turns out in this way that the structure function .S determines not only the concentration
field but also the actual temperature of the system. To obtain results from the above equations,
in this way a self-consistent solution both for the concentration fields and the temperature
changes has to be developed.

In application of the above-derived equations, one should bear in mind that in the Cahn—
Hilliard—-Cook approach one deals with a coarse-grained free energy, averaged over volume
elements considerably exceeding in size the intermolecular distances (lattice constants). Sim-
ilarly, the applied macroscopic concept of a wavelength A looses any meaning if A = 27 /k is
less than the lattice constant. This condition gives a natural estimate of the upper limit of the
number of modes, which have to be taken into account in the numerical calculations carried
out to solve the above given equations.

11.2.3 Results of Numerical Calculations

Going over to the dimensionless variables { = ¢(4xM)/a* and k = ak, and using Eq. (11.25)
the basic equation (11.18), describing the time dependence of the structure factor, can be
written in the form (see also [162])

M) ) ()

B=2-0\T, T=T,+AT, (11.27)

~ k
AT = Q, zk: <52(k, )> (1 - 5) , (11.28)

where €27 and €25 are two parameters characterizing specific properties of the solution consid-
ered.

In the homogeneous thermodynamically unstable initial state, the temperature 7" equals
Ty. Correspondingly, the initial value of the critical waveinumber k. is k.o. In the course of
the decomposition process the temperature increases and k. decreases.

The results of the numerical evaluation of Egs. (11.26)—(11.28) are shown in Figures 11.1—
11.3. In Figure 11.1, the structure factor is shown for different moments of time. In contrast
to the picture observed for the isothermal case the maxima of the S2-curves are shifted to
lower values of k with time. In Figure 11.2 (left curve), the temperature 7' is shown as a
function of time. Clearly three different stages of the transformation may be distinguishably
characterized by different types of functional dependences T' = T(%v) The first stage of spin-
odal decomposition is characterized by the stochastic generation of the random concentration
field [54]. Remember that here we start the process with a homogeneous initial state. In ex-
perimental investigations, such a stage may not occur since already in any equilibrium state
density fluctuations with well-defined properties are present. Such fluctuations will be re-
tained in the process of transformation of the system into the respective nonequilibrium state
(cf. also [250]).
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Figure 11.1: Structure factor 2 (757 tN) for different moments of time (¢ = 3000 (a), 4000 (b), 5000 (c),
7000 (d), and 9000 (d) (in reduced units)). With increase of time a shift of the maximum to lower values
of the wavenumber and an increase of the value of the maximum is observed.

This first stage of spinodal decomposition is followed by a stage of independent growth of
different modes. Hereby such modes are amplified, in particular, corresponding to wavenum-
bers kmax = E(O) /+/2. This type of evolution then goes over into a stage of moderate com-
petitive growth of the modes characterized by self-similarity and scaling laws. B

The behavior of temperature in dependence on time is also reflected in the k. = k. (t)-
curve, shown in logarithmic coordinates in Figure 11.2 (right curve). An analysis of the curve
verifies that in the second and third (late) stages of the transformation a scaling behavior for
the critical wavenumber of the form

3
5 second stage

ke t% a~ (11.29)
third stage

=

is established. This type of functional dependence of the critical wavenumber on time is
confirmed both by experimental results [250, 334] and by Monte Carlo simulations (MC) of
spinodal decomposition in adiabatically closed systems [177].

The scaling law as expressed by Eq. (11.29) is different from the well-known power
law; one has to expect according to the Lifshitz—Slezov theory of coarsening [155]. Such a
Lifshitz—Slezov behavior is indeed found for isothermal MC simulations of the same process.
It follows that the temperature variations in the system result in a different scaling behavior as
compared with the isothermal case, at least, for the considered interval of time.
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Figure 11.2: (a): Temperature vs time curve for spinodal decomposition in adiabatically closed systems.
The curve results from the solution of Egs. (11.26)—(11.28) (for the details of the computation and the
values of the parameters see [162]); (b):The dependence of the critical wavenumber k. on time in a
double logarithmic plot. In the second and third stages of the decomposition process a linear behavior is
found indicating the existence of power laws of the form k. ~ ¢~“. As a result of a linear regression a
value o ~ 1/20 was found for the second stage of the process while for the third stage o = 0.245 ~ 1/4
was obtained. Similar dependences were observed recently in experimental investigations of spinodal
decomposition [250,334] in sodium silicate glasses.

The existence of a power law for k. in the late stage of the transformation, where the
temperature changes only slightly, suggests that the structure factor also obeys some kind of
self-similarity. Thus, we may propose an equation of the form [103,161]

S2) = f(t)g(u), U=~ — (11.30)

(5%) = f(t)g(u) P

to be valid. Moreover, we demand, that at any moment of time the normalization condition
/g(u)du=1 (11.31)
0

is fulfilled.

In Figure 11.3 the function g(u), as calculated from the numerical solution of the set
of Egs. (11.26)—(11.28), is shown for different moments of time in the third stage of the
transformation. It can be easily noticed that, indeed, a universal distribution function g(u) is
established, which gives a verification of the proposal expressed by Egs. (11.30) and (11.31).

The results of the numerical solution of the basic equations (11.26)—(11.28) describing
decomposition in adiabatically closed systems lead to the conclusion that in analogy with nu-
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Figure 11.3: Normalized structure factor g(u) in dependence on the reduced wavenumber E/ ke. The
different curves on the left-hand side of the figure correspond to t = 1000 (a), £ = 2000 (b), £ = 3000 (c),
t = 4000 (d), t = 5000 (e). In the course of the evolution, a time-independent distribution is approached
as shown on the right-hand side. Here the curves obtained for t = 5000 and for £ = 9000 are shown. As
easily verified both curves coincide practically.

cleation and growth processes in finite systems [220,230], the whole course of the transforma-
tion can be roughly divided into three different stages, a first stage of formation and moderate
growth of the initial density inhomogeneities, a second stage of rapid increase of these den-
sity differences, connected in adiabatic systems with a sharp increase of temperature, and a
third stage of reorganization of the concentration field, characterized by self-similarity and
scaling laws. The following section is devoted to a theoretical interpretation of this scaling
behavior [238].

11.2.4 Theoretical Interpretation

For the analytical verification of the scaling laws we omit stochastic terms in the Cahn—
Hilliard—Cook equation being of significant importance only with respect to the formation
of the initial concentration profile. A substitution of Eq. (11.30) into the differential equa-
tion (11.26) then yields
d k dk. d ~
—Inf(t) - =—=—1 = kiu?(1 —u?). 11.32
0 - 5 g el) = B — ) (1132)
Assuming (as it is verified by the numerical calculations) that

d
T f(H=0 (11.33)
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holds we arrive at

d (k7% d B )
e ( 1 ) — Ing(u) = u(l — u). (11.34)

Since the right-hand side of Eq. (11.34) is only a function of the reduced variable u, the left-
hand side of this equation must also be a function of u. Consequently, the relation

d (k*
— =) =ci! 11.35
has to be fulfilled. The general solution of this equation may be written as
~ C
R — (11.36)
4(t+ CY)

which for large times results in
Eroctt (11.37)

This result immediately confirms the scaling law (11.29) obtained numerically.
Moreover, for the determination of the function g(u) we get the equation

d
™ Ing(u) = Cru(l —u?) (11.38)
with the general solution
2 4
g(u) = Cy exp [Cl <“ - “)} (11.39)
2 4
or, equivalently,
g(u) = Aexp [—B (u? — 1)2} : (11.40)
A= Csyexp (%), B:%. (11.41)

This result shows, in agreement with the numerical solution, that, indeed, the maximum of
the distribution function g(u) is located at u = 1 or k = k.. Moreover, the shape of the
distribution function is also reproduced in a correct way.

One of the constants A and B in Eq. (11.40) may be determined from the normalization
condition (11.31). However, it is easily seen from Egs. (11.26)—(11.28) or

~ dk. dT
2k, T 0 T (11.42)

that the coefficient C; depends on specific properties of the system under consideration (£2;
and €23) and is not a universal parameter. In this way, the width of the distribution is well
defined but not universal, it depends on specific properties of the system under consideration,
in particular, on the rate of change of the critical wavenumber.
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11.2.5 Discussion

The theoretical description of spinodal decomposition in the framework of the Cahn—Hilliard—
Cook theory comes across two serious difficulties. The first consists in the correct determi-
nation of the free energy density for the initial thermodynamically unstable state. The sec-
ond problem is connected with a correct introduction of nonlinear terms into the original
Cahn-Hilliard—Cook equation, to avoid an unlimited amplification of the density fluctuations.
Different attempts have been developed to overcome these difficulties (see, e.g., [34, 145]),
however, so far a final solution of these problems is missing.

An analysis of phase separation processes, starting from metastable initial states and pro-
ceeding via nucleation and growth, leads to the conclusion that the change of the state of
the system (change of supersaturation or thermodynamic driving force of the transformation)
resulting from the transition determines the whole scenario of the process [94,220,230]. In
spinodal decomposition the thermodynamic driving force of segregation is given by the sec-
ond derivative of the free energy with respect to molar fraction or concentration of one of the
components. By analogy and in agreement with the thermodynamic stability conditions, one
may expect that variations of this quantity should also determine basically the course of the
phase transformation in spinodal decomposition.

In the special case, considered here, the variations of the thermodynamic driving force of
the transformation can be calculated relatively easily. They are due to, in the applied approach,
exclusively temperature changes in the system. This is the only factor taken into account
and as already mentioned, in analogy with nucleation and growth processes it determines
qualitatively the whole scenario of the transformation. Since, as discussed, the change of the
driving force of the transformation is expected to be the major factor, governing the phase
transformation, a similar scenario should be always expected to occur in experiments and also
in theoretical approaches, when the change of the state of the system (or nonlinearities in
spinodal decomposition) are described in a proper way.

Indeed, Binder [29] and Mazenko et al. [174] found theoretically a (1/4)-power law be-
havior based on a field theoretical approach for the description of spinodal decomposition.
Moreover, it has been shown by Velasco and Toxvaerd [336] in recent molecular dynamics and
Monte Carlo simulations of spinodal decomposition that in binary systems under isothermal
conditions in the late stages such (1/4)-power laws are also found; giving a additional sup-
port of our hypothesis. While in one-component closed systems under adiabatic constraints,
as considered here, the change of the thermodynamic driving force of the transformation is
due to the increase in temperature, for isothermal conditions in binary systems it is connected
with a change in the composition. The existence of such stages in spinodal decomposition has
also been predicted theoretically in an alternative way (cf. [195]) and observed experimen-
tally [250, 334].

The exponent in the power law for the critical wavenumber k. may be, of course, different
in dependence on the specific mechanism governing the decomposition process at a certain
stage. Note that the equations considered do not include hydrodynamic effects (compare
[29,336]) as well as restrictions on the amplitude of the density variations. In this sense,
the considered process describes not the evolution of an already formed two-phase system —
as in the Lifshitz—Slezov theory of coarsening — but the process of formation of two distinct
phases. It can — and will be, in general, — followed by laws of the type (R) o t'/2 and (R) o
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t1/3 describing independent and competitive growth of ensembles of clusters, respectively
[250,334]. In the final part of this chapter we will show that — based on the generalized Gibbs
approach — a generalized cluster model can be developed taking into account both density
(composition) and size variations of the clusters and allowing one to treat both nucleation—
growth and spinodal decomposition in a unique way.

11.3 Generalized Cluster Model Approach to the
Description of Phase Separation: The Model System

We consider thermodynamic aspects of new phase formation in a binary solid or liquid so-
lution; both in finite domains and infinite space. Since here we are mainly interested in
the discussion of the basic principles and consequences of the newly developed generalized
Gibbs’ approach in application to phase separation, the solution is considered as a regular one
representing one of the simplest models of a system consisting of two kinds of interacting
molecules. The domain, where the processes of nucleation and/or spinodal decomposition are
assumed to proceed, is considered similarly to [205] as a sphere of radius Ry. The limiting
situation of an infinite system is thus reached for Ry — oo, while finite-size effects take place
for finite values of Ry (see Figure 11.4).

Figure 11.4: Model employed in the analysis: A cluster of size, R, and molar fraction, x, is formed in
avolume, V = 47 R} /3, of an initially homogeneous binary solid or liquid solution with a composition
given by the molar fraction, 3. The initial composition of the ambient solution is denoted by x.

Cluster formation in a binary solution results from a redistribution of molecules. Following
Gibbs’ model approach, we consider a cluster as a spatially homogeneous part of the domain
volume with a composition different from the ambient phase. Both size and composition of
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366 11 Nucleation versus Spinodal Decomposition in Confined Binary Solutions

the cluster may vary in a wide range. As the dividing surface, separating the cluster from the
ambient phase in the thermodynamic description underlying the method of analysis, we here
always employ the surface of tension [85,258,259]. As in an analysis [222,262] performed
in terms of the classical Gibbs approach and investigations of related problems employing
different methods [189,205,266], the effect of the finite size is taken into account only by the
conservation laws for the number of particles of different components in the cluster (specified
by the subscript ) and in the ambient phase (specified by (3). We may then write

nj = Njq + Njg = const, j=12,
n = Ny + ng = const, (11.43)
Ng = Nla T N2a, ng = nig + nog.

The molar fractions of the second component in the ambient phase (x3) and the cluster (z,)
are defined as

vp=—2B g =2 (11.44)
ni1g + nogp N1a + N2

The initial state is either a metastable or unstable homogeneous state, characterized by z, (0)
=z3(0) = z.

In line with the basic assumptions underlying the model of regular solutions [25] and for
simplicity of the notations, the volume per particle, w, is assumed to be the same for both
components and independent on composition (w, = wg = w). Cluster size and particle
number in a cluster are then related by the following simple expression:

47

TR = now. (11.45)

Assuming further that a cluster of radius R and composition z,, is formed in a spherical
domain of radius Ry and initial composition z, Eqs. (11.43), (11.44), and (11.45) yield

1y = Mot _ T T (R/Ro)?" (11.46)
n—ng 1— (R/Ry)®

The change of the Gibbs free energy, AG, connected with the formation of one cluster in
the initially homogeneous ambient phase in a commonly good approximation can be written
as [249,253,254]

AG =0A+> nja(ije — 1) + Y15 (1158 — tjo) (11.47)

J J

The first term on the right-hand side of Eq. (11.47) reflects cluster surface effects (o is the
interfacial tension and A is the surface area of the cluster) and the second term reflects clus-
ter bulk contributions to the change of the Gibbs free energy. The third term describes the
influence of depletion effects (change of the composition of the ambient phase due to cluster
formation) resulting in differences of the chemical potentials per particle in the initial state
(14j0) and the state of the ambient phase once a cluster has been formed (1;3).
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11.3  Generalized Cluster Model Approach to the Description of Phase Separation 367

For a binary regular solution the chemical potentials of different components in the cluster,
Hja» and ambient solution, j;3, are defined by [25]

fa/s = Mia/s + kBT I(1 = 24)5) + Qa2 5, (11.48)

* 2
H2a/8 = Haays + kBT Za/s +Q (1= 2a/s)

where kp is the Boltzmann constant, 7" the absolute temperature, and € is an interaction
parameter describing specific properties of the considered system. The parameter, €2, can be
expressed via the critical temperature, 7, of the system (cf. also Figure 11.5) as

Q
T, =—. 11.49
kn ( )
1
d .Qoe’%\
=08 S
5 ¥
= - — e S
E | s |
S 061/ &
g l :
E 1 1
S 04f o/
L) I
S 02t/ |
1 1
E ' lxb lxsp
0 1 1 1 1

0 0.2 0.4 0.6 0.8 1
Initial solute concentration, x

Figure 11.5: Phase diagram of a binary regular solution with binodal and spinodal curves. The spinodal
curve separates thermodynamically stable from thermodynamically unstable states of the homogeneous
ambient phase. In the present analysis, we assume that the temperature is equal to 7" = 0.77, and can
vary the driving force of the phase transformation process by changing the initial composition of the
ambient phase, x.

The surface tension between two macroscopic phases with compositions z, and xg, re-
spectively, is given, according to Becker ( [25], see also [50]) by

0 =0 (2o —x5Y . (11.50)

From Egs. (11.47), (11.48), (11.49), and (11.50), we have

E = §n;/3ni/3 (xo — x5)2 +naf(xs, za) —nf(zs, ), (11.51)
kgT 2
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368 11 Nucleation versus Spinodal Decomposition in Confined Binary Solutions

where

f(zp,20) = (1xa){1n1_z; +2% (:cixg)} (11.52)

+ Zo {ln j—; + 2% {(1 — 2. —(1— mg)ﬂ}

holds and the scaling parameter, n,,, for the particle number in the cluster is specified as

_ 1/3
nf? = 2 (‘%”) W23, (11.53)
B

In addition, we also introduce via Eqs. (11.45) and (11.53) a scaling parameter, R, for the
cluster radius as

1/3 ~
R, = (3”"“’> _ 20w (11.54)

47 T kT’

In further analysis, we will always assume for an illustration of the results that the tem-
perature in the system is equal to T' = 0.77.. The concentration of the solute in the initially
homogeneous system is varied in the range from x = x;, =2 0.086 (left branch of the binodal
curve) to x = x5, = 0.226 (left branch of the spinodal curve) covering metastable initial states
and zs, < x < 0.5 covering unstable initial states (see Figure 11.5). Since the phase diagram
of a regular solution is symmetric [254], we may restrict the analysis to initial states in the
considered range with initial concentrations, z < 0.5. A specification of further parameters
like o and w is not required, since we compute reduced characteristics, so that such system
parameters can enter the description only via the scaling quantities (see also [254]).

11.4 Phase Separation in Infinite Domains

11.4.1 Thermodynamic Analysis

The above-given equations allow us to determine the thermodynamic potential surface as a
function of the number of particles, n1, and nsy,, in the cluster. The results are shown for
different values of the initial supersaturation in Figure 11.6 both for metastable ((a) z = 0.15,
(b) x = 0.19, (¢) x = 0.22) and unstable ((d) x = 0.3, (e) x = 0.4, (f) x = 0.5) initial states.
Depletion effects are neglected so far (we consider infinite systems), so we set Ry — 00. As
far as we are interested mainly in the demonstration of the basic qualitative features, like in
Figure 11.6 and similar ones, the numbers are omitted at the axes.

For each of the metastable initial states, the thermodynamic potential surface has, in the
vicinity of the critical cluster coordinates, a typical saddle shape. The position of this saddle-
point is determined by the set of equations

6AG (nla, Tlga)
anla

8AG (n1a s TLQa)

=0
’ anQa

—0, (11.55)
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ey

Irhial slate,
2oz, AG]

[

x=0.15 m

Figure 11.6: Shape of the Gibbs free energy surface for metastable (x = 0.15, z = 0.19, and x = 0.22;
(a)—(c)) and unstable initial states (x = 0.3, x = 0.4, and z = 0.5; (d)—(f)). As mentioned, the
temperature is chosen equal to T'/T,. = 0.7 (for further details, see the text).

if we employ Eq. (11.47) for the description of the thermodynamic potential surface. In an
alternative approach utilizing Eq. (11.51), we may first determine the size of the cluster for
any fixed value of x,, via

OAG (na; za) 1/3 1/3 (%o —x)°
— o) =— . 11.
One, 0 = )= flz,wa) (10
A substitution of the expression for n, into Eq. (11.51) yields (cf. also Eq. (11.53))
_ )6 ~3 92
AG(Ma(Ta)2a) 1 (Ta=2) - 32r Fw (11.57)
kT 2 7 2z, zy) 3 (kgT)3

The composition of the critical cluster and the work of critical cluster formation is then ob-
tained by searching for the minimum of AG(n (x4 ), o) With respect to the cluster compo-
sition, x4, [249,253,254,259] as

dAG (ng(zq), Ta)

dz,

=0. (11.58)
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370 11 Nucleation versus Spinodal Decomposition in Confined Binary Solutions

In order to allow us a better understanding of the shape of the thermodynamic potential
surface, contour lines through the saddle are included in the figures by full curves and the
curve of steepest increase of the potential surface starting from the critical cluster coordinates
by dotted curves. The full curve with arrows describes the most probable trajectory of cluster
evolution. It starts at some point along the dashed curve determined by the initial conditions
o = x and AG = 0 (in the initial state, the composition of the cluster is the same as
in the ambient phase). Then it passes the saddle point and follows further the trajectory of
macroscopic growth with an initial cluster size slightly above the critical size. As discussed
in detail in [254], the trajectory of evolution from the initial state to the saddle point can be
assumed to coincide, in general, with the path of cluster dissolution starting with initial states
slightly below the critical cluster size.

The most probable trajectory of evolution is thus determined for both regions by the
macroscopic growth equations. For segregation in solutions, these equations can be written in
the form

dnla dAG
— —Dy(1 — 24)0n" 2
at 11— 2)0ng g =
(11.59)
ANy AAG
22 _ _Dor il
a 223O0ma 3~

where D, and D- are the partial diffusion coefficients of different components in the ambient
phase. The parameter « has the value x = 2/3 for kinetically limited growth, x = 1/3 for
diffusion-limited growth, and Oy is a parameter depending only on temperature (we set, as
mentioned, the temperature equal to 7" = 0.77;). As evident from the above considerations
and the structure of Eqs. (11.59), the path of cluster evolution depends on the partial diffusion
coefficients of both components of the solution (see for the details [254]); however, quali-
tatively the picture remains always the same. In Figure 11.6, the trajectories are shown for
Di(1—x 3) = Dy . In this case, the kinetic prefactors to the partial derivatives of AG with
respect to 1, in Egs. (11.59) are the same and the evolution proceeds along the valley of the
thermodynamic potential surface, AG (114, n2y ), passing the saddle point.

The analysis of Egs. (11.56) and (11.58) shows [249, 253, 254] that the composition of
the critical cluster decreases with increasing supersaturation and approaches the value of the
composition of the ambient phase for initial states near to the spinodal curve (cf. Figure 11.7).
The work of critical cluster formation decreases monotonously with increasing supersaturation
and tends to zero at the spinodal curve (Figure 11.8). Taking into account Eq. (11.52) and the

relations
of (x,xa) To 11—z, T,
Tt = () w7 ) e,

Pflz,xs) 1 1 T,
o T tTm —4<?>, (11.60)
Pf(x,xa) o 1-2z,

o3 22(1 —1,)%’
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Figure 11.7: Dependence of the composition of the critical cluster, x,,c, on the initial solute concentra-
tion. For z > xp, the identity ., = = always holds [254].
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Figure 11.8: Dependence of the minimum work of critical cluster formation, AG¢ int/(noksT'), on
the initial solute concentration, x, for infinite domains (specified by the abbreviation, inf) when changes
of the state of the ambient solution due to cluster formation can be neglected.

it can be shown that the critical cluster radius, R., behaves as

1
lim R, x lim ——. (11.61)
T Top t—za (T — )
In this derivation, the equation (92 f(z, z,)/022)| = 0 has been employed [249].

Ta=Tsp

The dependence of the critical cluster size on supersaturation is illustrated in Figure 11.9.
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Figure 11.9: Dependence of the critical cluster radius, Re,inf/Ro, on the initial solute concentration, x,
for phase formation in an infinite domain at metastable (x, < & < Zsp) and unstable (z > xp) initial
states of the ambient solution.

The results summarized above are also reflected in Figures 11.6(a)—(c). As evident from
the figures, with an increase of the supersaturation (molar fraction in the ambient phase) the
nucleation barrier decreases, the location of the saddle point is shifted closer to the line of
initial states, x, = x, and at the spinodal, x = xp, the position of the critical cluster tends to
the composition of the ambient phase, i.e., the critical cluster is located in this limiting case
on the line of initial states. Since, for the initial states corresponding to the spinodal curve, the
condition x, — x holds, for such states the work of critical cluster formation (determined via
the generalized Gibbs approach employed here) tends to zero.

For unstable initial states, x5, < x < 0.5, the situation is different. Here the critical cluster
has always a composition equal to the composition of the ambient phase (cf. Figure 11.7 and
[254]). The critical cluster size cannot be expressed here directly by employing Eqs. (11.56)
and (11.60), since for x, = x the relations

AG _ 9 [AG 0 (AG
To=2 B axa kBT To=T N ana I{}BT

kpT
hold independently of the value of n,, in Eq. (11.51). In the definition of the critical cluster
size for unstable initial states we have to thus rely on the second-order differential of AG
with respect to n,, and x,. As can be proven easily, the second-order differential of AG for
states with z, = x is given by A*AG| _ = (9°AG/0x2)| __da2. The second-order
derivative of AG with respect to z,, at z, = z can be expressed as

2 [ AG . ne \"*
— | —— = /32301 — @ 11.
5z (kBT) . 3n)/°n { (na) : (11.63)
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where the notations

3ny/? o 1Pf(@xa)
2K’ 2 022

1/3 _
noz,c -

To=T

1 T, 1 1
=—|4(=)—=——"—| (11.64
2{ (T) x 1—£L':|( )
are employed.

In the range of metastable initial states x;, < x < zgp, the critical cluster corresponds to
a minimum of AG(nq(z4), To) With respect to the variations of the state of the cluster, i.e.,
(d?AG/dz2) > 0 holds [259]. For unstable initial states, states along the trajectory z, = @
with AG = 0 again correspond to minima with respect to variations of the state parameters
of the cluster phase at fixed values of the cluster sizes if the inequality (nq/nq.c)"3 < 1is
fulfilled (cf. Eq. (11.63)). However, there exists a cluster size, n, ., where the state along the
line x = x,, switches from a minimum to a maximum of AG with respect to variations of the
cluster composition at fixed values of the cluster sizes. The possible trajectories of evolution
for no > na,c are shown by full curves with arrows in Figures 11.6(d)—(f).

Moreover, in Figures 11.6(d)—(f), the solid curve, AG = 0, divides regions with AG > 0
and AG < 0 as compared with the states corresponding to z, = . In the first region (that
is in the region with 9>AG /922 |%:r > 0or (ng/Na,c) < 1) cluster composition changes
lead to the growth of the Gibbs free energy, and the cluster is stable in such region. In the
second region (9°AG/dxZ| _ < 0or (na/na.) > 1) any compositional change (both
increase and decrease of the cluster concentration) results in a decrease of the Gibbs free
energy. In such region, the cluster is unstable and the decomposition proceeds via growth of
the concentration differences, i.e., according to the basic mechanism commonly assigned to
spinodal decomposition. Thus, for z > x;,, the system is stable for small clusters and unstable
for clusters with a size n, > nq .. So, changing the size of the clusters with composition equal
to the composition of the ambient phase, we arrive at a transition from metastable to unstable
states and at n, = N4, the minimum transforms into a maximum via a singular point of third
order. Recalling the physical meaning of a critical cluster size as the lowest size of a cluster
for which a spontaneous further growth in accordance with the thermodynamic evolution laws
is possible, n, . as defined via Eq. (11.64) is obviously an appropriate definition of the critical
cluster size for unstable initial states.

In terms of the radius, we may express the critical cluster size in infinite domain as

38,

Rcin = .
T 9K

(11.65)

The parameter K is positive for values of x in the range of unstable initial states and tends to
zero at the spinodal curve (cf. [249,254]); resulting in a divergence of the critical cluster size
for unstable initial states near the spinodal curve (cf. Figure 11.9). The work of formation
of such critical cluster is, in the range of unstable initial states of the ambient phase, always
equal to zero (cf. Eq. (11.51)).

11.4.2 Kinetics versus Thermodynamics in Phase Separation

In discussing the trajectories of evolution in phase separation processes, we assumed here in
line with the commonly employed assumption that the evolution to the new phase proceeds
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374 11 Nucleation versus Spinodal Decomposition in Confined Binary Solutions

via the saddle point of the thermodynamic potential surface. We believe ridge crossing as an-
other possible channel of formation of the new phase [212,213,328] to be of importance only
in the vicinity of the spinodal curve [254] since otherwise the increase of the potential barrier
required for ridge crossing as compared with the evolution via the saddle point overcompen-
sates as a rule the advantages connected with the eventually easier realization of the kinetics
of the process. Of course, the trajectories of evolution via the saddle point will depend on the
kinetics and, for the model system considered, on the ratio of the partial diffusion coefficients
of both components. The different paths of evolution of the critical clusters and their further
growth in dependence on the ratio of diffusion coefficients of both components are illustrated
in Figures 11.10 and 11.11.

A

1.0 Xo = *macro

Cluster radius, R

Xg, =X

Cluster composition, x,
S
]
T

1 i 1 1 1
1.0 : *o. = *macro

_______ PR =y

1 1
0 05 1.0 1.5 2.0 25 3.0
Cluster composition, x,, Reduced radius, R/R,

0 1 i 1

Figure 11.10: Schematic illustration of trajectories of evolution in dependence on the ratio of the partial
diffusion coefficients of different components in the solution. On the right-hand side, the change of
the composition of the clusters in dependence on reduced cluster sizes, R/ R., is shown for the three
different cases considered: (a) Dy < D1, (b) D2 =~ D1, and (c) D2 > D;.

For this purpose, we choose a volume of radius R in the center of some spherical domain
(see Figure 11.10, left side). This selected volume has initially the same composition as the
ambient phase, therefore it is not a cluster yet. If atoms of the second component are incor-
porated into this volume, the concentration, x,,, of this component in the cluster increases,
its size increases, and it becomes a (super)critical nucleus of a new phase. Such scenario is
realized (cf. [254]) when the mobility of the atoms of the second component is higher than for
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Figure 11.11: (a) Path of the cluster evolution in the (r, 2 )-space. (b) Shape of the Gibbs free energy
surface and path of the cluster evolution in the (n1/n¢, na/n.)-space. The computations are made for
a regular solution with molar fractions z = 0.15, z = 0.19, and z = 0.22 of the second component
in the ambient phase for different values of the ratio D1/Ds: D1/Dy = 0.1 (1), D1/D2 = 1 (2),
D1/D2 =10 (3).

www.iran—mavad.com

Age Crwdivs 9 Olgils @ yo



376 11 Nucleation versus Spinodal Decomposition in Confined Binary Solutions

the atoms of the first sort (Figure 11.10(a)). The dependence of concentration of the cluster
on its radius is given on the right-hand side.

In the opposite case, when the mobility of atoms of the first kind is higher, the formation
of the critical cluster proceeds in such a way that atoms of the first kind leave the region where
the cluster will be formed. In such case, the concentration, x,,, of the cluster increases but
its size decreases (Figure 11.10(c)). Again, the dependence of cluster composition on cluster
size is shown on the right-hand side. Once the critical cluster is formed in such process, its
further growth is then again determined by the motion of the second less mobile component.
So, here we have the situation that growth processes will proceed with much smaller effective
diffusion coefficients as the nucleation process. And, finally, in the case when atoms of the
first kind in the cluster are replaced by atoms of the second one, i.e., when the mobilities of
both components are nearly equal (or more precisely, if the relation D1 (1 — ) = Dyx holds,
cf. Eq. (11.59)), the change of the composition of the cluster proceeds at nearly constant size
(Figure 11.10(b)). In all these cases, the critical cluster is the same (determined thermody-
namically) but the trajectories of evolution differ (see also [254]) due to different ratios of the
partial diffusion coefficients of different components involved in the process of formation of
the new phase.

11.5 Phase Separation in Finite Domains

11.5.1 Thermodynamic Analysis

It was shown in the preceding analysis that, neglecting depletion effects, the critical cluster
size diverges in the vicinity of the spinodal curve (Figure 11.9). Taking into account that phase
separation processes in real systems always proceed in systems of finite size, the model of an
infinite domain is not appropriate in a variety of cases already by this reason. In the further
analysis, the effects of finite domain size on the phase separation processes are studied.

Similar to Figure 11.6, Figures 11.12—-11.15 represent the shape of the Gibbs free energy
surface AG(n14, N2, ) in dependence on the domain size, Ry, for different values of the initial
solute concentration (Figure 11.12: & = 0.15 < x4y, Figure 11.13: z = zy, =~ 0.226,
Figure 11.14: x = 0.3 > z,p, and Figure 11.15: z = 0.4 > x4,). As evident, at a given value
of the supersaturation, the degree of instability of the system decreases with the decrease
of the domain size. For example, for the case of an initial molar fraction equal to z = 0.15
(Figure 11.12), the critical cluster sizes, R, and the nucleation barrier, AG ., increase with the
reduction of the size of the domain, Ry. The free energy difference, AGy, corresponding to a
stable coexistence of a single cluster with radius, I2, in the ambient phase noticeably grows,
the size of this stable cluster, R, decreases considerably. The free energy difference, AGy,
reaches a value equal to zero at Ry/R, = 14.55. At such system size, initial (homogeneous)
and final (heterogeneous) states become equivalent from a thermodynamic point of view. With
the further reduction of Ry, AGy becomes positive, and for Ry/R, = 12.66 the relation
AGy = AG, holds and the transition to a two-phase system becomes impossible due to
finite-size effects.

For the considered supersaturation, in the range Ro/R, > 14.55, the initial state of the
finite system is metastable. The final two-phase state is characterized by smaller values of
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Ry=14.55R Ry=12.66R n

Figure 11.12: Shape of the Gibbs free energy surface for x = 0.15 and for different values of the
domain size, Ry.

Figure 11.13: Shape of the Gibbs free energy surface for x = x, and for different values of the domain
size, Ry.
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R~ 1335R, < R = 6.83 R —
unstable metastable

metastable stable

Figure 11.14: Shape of the Gibbs free energy surface for x = 0.3 and for different values of the domain
size, Ry.

the Gibbs free energy, AGy < 0, as compared with the homogeneous initial state. As a
consequence, once a stable state of the cluster in the ambient phase has been formed, the
reverse transition is, as a rule, highly improbable. For Ry/R, = 14.55, the initial state of the
system is also a metastable state; however, now homogeneous and heterogeneous states are
characterized by the same values of the Gibbs free energy, i.e., AG;y = 0. For this reason,
the heterogeneous state can be transferred by appropriate processes back to the homogeneous
initial state. Thus the inequality

AGy <0 (11.66)

can be considered as the condition of metastability for the homogeneous initial state. Similar
processes occur with even higher probability in the range 12.66 < Ry/R, < 14.55. Here
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Figure 11.15: Shape of the Gibbs free energy surface for = 0.4 and for different values of the domain
size, Ro.

again the initial state of the system is metastable, but the final state has larger values of Gibbs’
free energy as compared with the homogeneous initial state, i.e.,

AG. > AGf >0 (11.67)

holds. So, Eq. (11.67) is the condition of metastability for the heterogeneous state. And,
finally, even if phase transformations may occur in a sufficiently large system, this is excluded
for domain sizes Rog/R, < 12.66. For such system sizes, the system is to be considered here
as stable.

The results discussed here for a particular value of the initial supersaturation in the range
of metastable (for infinite systems) initial states — i.e., increase of the critical cluster size,
R., and the work of critical cluster formation, AG., the increase of AGy, and decrease of
Ry — are general consequences of depletion effects in nucleation. They have been derived
analytically in the framework of the classical Gibbs approach both for condensation in gases
and phase formation in solid solutions earlier [75,222,229,230,233,234,262,331]. It can be
shown that the respective conclusions remain valid when the generalized Gibbs approach is
employed for the description of the thermodynamics of cluster formation [261]. From a more
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general point of view, such dependences can be considered as consequences of the principle
of le Chatelier-Braun [133,331].

However, as to our knowledge, so far the effect of finite size on the kinetics has not been
studied for the case that the process starts from unstable initial states. This task will be per-
formed in the subsequent analysis. Shapes of the Gibbs free energy surface AG(n1q,n2q)
for v = x5, ~ 0.226 and for different values of the domain size, R, are presented in Fig-
ure 11.13. The shapes of the free energy are qualitatively very similar to the respective results
shown in Figure 11.12.

The respective dependences, AG (N4, N2 ), for unstable initial states with x = 0.3, are
shown in Figure 11.14. In addition, the dependences of AG along the evolution path are
shown in Figure 11.16 (here the path, s, is the distance in (n14/n,,n2q /Ny )-space, that
is ds = (dn?, + dn3,)'/?/n,, and s > 0 for x, > z and s < 0 for z, < z). For
Ry/R, > 6.83, spinodal decomposition is a possible mode of evolution to the new phase.
For low system sizes, here at Ry/R, < 6.83, a nucleation barrier arises and the system
transforms to a metastable one. With the further reduction of the domain size the behavior
of system is the same as for + < xg,. For x = 0.4, the surface AG(niq4,n24) is shown
in Figure 11.15. The shapes of the thermodynamic potential surfaces are similar to the case
x = 0.3, only the characteristic values of the system size Ry, at which the transition from
spinodal decomposition to nucleation occurs, are smaller.

AG/ngkgT Stable //'R i
0.001 | _ ===, "0
RYRF133  zZ— o RoR45
0 /\ _Q..'.. ‘..'
[ Ry/Rg=4.87
(7))
~0.001 s
]
-0.002 + = =
RY/R A5 Ry/R 493
~0.003 F 5
~0.004 F ““ RO/RGZS.I
Unstable
0.005 | \ \ Ro/R=6.83
| 5 L~
) 0 2 4 6

Path

Figure 11.16: Gibbs free energy along the preferred trajectory of evolution to the new phase for initial
states of the ambient phase with x = 0.3 and for different values of the domain size, Rj.

Equation AG.(Ry,z) = AGf(Ry,x) defines the minimal domain size, Ry ;(x), which
allows nucleation in the initially homogeneous system, i.e., defines the binodal depending on
the domain size. Let us define as the next step the spinodal curve for the domain of finite size.
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11.5 Phase Separation in Finite Domains 381

Equation (11.63) may be rewritten as

R\ R R\ R\
= 2K 1— 1— (= 1— (=
Ta=2 (Rc,inf ) { Rc,inf (RO ) } [ <RO )

and then Eq. (11.62), which determines critical size in spinodal region, takes the form

?AG
o2

. (11.68)

R} — R.R} 4+ R3Rcint = 0. (11.69)
The equation has only one root for

44/3 2 e To 1 1\
= Reng(z) = Ry=4/3 (426 — — — 11.7
g Reant(@) = Ro g ( T = 1—33) , UL70)

Ry = RO,sp('r) =

and two real roots for Ry > Ry g¢p(z), and at Ry < Ry () Eq. (26) does not have any
roots. Consequently, the function Ry 4 () determines the minimal domain size Ry sp(z),
which allows spinodal decomposition in the system, i.e., it defines the spinodal depending on
the domain size.

Dependences of minimal domain sizes Ry /R, and Ry sp/ R, on the initial solute con-
centration, x, are presented in Figure 11.17. Metastable region is located between curves
Ry (z) and Ry g, (x), unstable (spinodal) region is located to the right from Ry g, ().

45
40
35
30
25+
20 -
151
10 -

5 -

O,SP/RG

Unstable

Reduced domain size

=

l—————— - — - —

0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Initial solute concentration, x

Figure 11.17: Dependence of the reduced minimal domain size, Ro,»/R- and Ro,sp/ R, on the initial
solute concentration, x.

The critical radius for the minimal domain size is determined by

_ 8(,T. 1 1\
Resp(2) = Re (Rosp, @) = Ro (4? —— -1 x) : (11.71)
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382 11 Nucleation versus Spinodal Decomposition in Confined Binary Solutions

The dependence of the reduced critical radius R, on the initial solute concentration x for differ-
ent values of the domain size Ry is illustrated in Figure 11.18. In the metastable region, R, (x)
is determined by Eqgs. (11.55), in the unstable one, by the solution of Eq. (11.71). Critical radii
corresponding to the minimal domain size for the metastable region R, ;(z) = R, (Rop, ),
and for the unstable one, Rcysp(az), are shown in Figure 11.18 by dashed-dotted and dotted
curves, respectively. Note that in the unstable region two critical radii exist: the smaller is
determined by the balance between volume reduction and the increase of the thermodynamic
potential due to surface formation (as for an infinite domain), the larger is determined by the
effect of changes of the state parameters (depletion effect). Indeed, we see that the larger value
of R, is comparable with the domain size, Ry.

8

Reduced critical radius, R /R

0.1 0.2 0.3 0.4 0.5
Initial solute concentration, x

Figure 11.18: Dependence of the reduced critical radius, R./ R, on the initial solute concentration, x,
for different values of the domain size.

Dependence of the minimum value of the work of critical cluster formation, AG../n,kpT,
on the initial solute concentration, x, for different values of the domain size, R, is shown in
Figure 11.19. In the region < xp, with domain size reduction AG, increases insignifi-
cantly, while for > x4, AG. = 0 for Ry — 00, and nonzero value of AG. arises only for
finite values of Ry. Dependence of the composition of the critical cluster, ., on the initial
solute concentration x, for different values of the domain size, Ry, is shown in Figure 11.20.
We see that with growth of solute concentration z, . decreases down to value = . = x, which

corresponds to the unstable region.
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Figure 11.19: Dependence of the minimum value of the work, AG./(n,ksT), of critical cluster for-
mation on the initial solute concentration, x, for different values of the domain size.
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Figure 11.20: Dependence of the composition of the critical cluster, z.,, on the initial solute concen-
tration z, for different values of the domain size.
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384 11 Nucleation versus Spinodal Decomposition in Confined Binary Solutions

11.5.2 Kinetics

Having performed the respective thermodynamic analysis, we will now consider the time
evolution of the clusters in segregation processes in systems of finite size. We assume that
the composition in a certain region of the ambient phase is slightly shifted by a value dn;, as
compared with the composition of the matrix, i.e.,

Nia = Nia,0 + 0Mia, N2a = N2a,0 + 0N2q. (11.72)

It is further assumed that the growth is kinetically limited (i.e., we set k = 2/3 in Eq. (11.75))
A substitution of Egs. (11.72) into Eqgs. (11.59) yields

dénia dAG
dtl =-Di(1- wﬂ)(_)(nlounZa)F cos ey, (11.73)
ddnog d
% = —Dx50(n1a, n2a)TSG sin . (11.74)
Here the notation
@(’I’Lla, nga) = @Q’I’Lg (1 175)

is used, dAG/ds is the absolute value of the gradient of the function AG (n14, 124 ) at values
of z, near to x, = z, and ¢ is the angle between the direction of the gradient and the axis
N1. It is defined by the equation

N20,0 1—=x

tanp = = . (11.76)
N1a,0 T N2a,0 T

Dividing Eq. (11.74) by Eq. (11.73) and taking into account Eq. (11.76), we obtain

oMNia = ——0N2q. 11.77
ny Dy no ( )
Using the variable x,, instead of dng,,
« « 5 «
- ”i _ M20.,0 + 0N — , (11.78)
n n
e 2 N1a,0 + N2a,0 + (1 — —1) Onga
Dy

we get the equation

dx,

N4
T ©oz (1 —z) <%) [#D1 + (1 — ) Dy] <_ o2

T=Tq

) (xo — ), (11.79)
where R is the initial cluster radius and (9?AG/022)| _ is determined by Eq. (11.68).

This linear equation has a solution of the form (2, —2) ~ ¢?/9*, where the growth increment
(or amplification factor) v(R) is determined via

~(Remt\' ([ 9AG
7(R)-M(T) (- 522 _) (11.80)
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11.5 Phase Separation in Finite Domains 385

and
M =0z (1 —x)[xDy + (1 — x) Do) (11.81)
holds.
For finite systems with a domain size lower than some upper value R,
AT (T, 1 1 \!
Ry < Ry =2Rgp = Ro—— (45 — = — , 11.82
0= 0 3 (T x l—x) (11.82)

the function y = -y (R) has a maximum. The value of the maximum increases with increasing
domain size. Moreover, at Ry > Ry,, a second maximum of equal height arises. After this
second maximum appeared, the height of the maxima does not vary any more with the further
increase of the size of the domain (Figure 11.21). The growth increment reaches the maximum
value for a domain size equal to

(#)" (# -
Rom for R < R, max,

where Ry max = (8Rs/3K).

The dependence of the growth increment,  (R), on cluster radius for various fixed domain
sizes, Ry (full curves), and for Ry = Ro max (R, x) (dashed curve) is shown in Figure 11.21
for the case D1 = D5 and x = 0.45, i.e., for macroscopically unstable initial states.

Equation (11.80) looks similar to the expression for the growth increment in the classical
Cahn-Hilliard theory of spinodal decomposition [44,45]. Indeed, let us introduce a wave
vector via k = R, /R, then Eq. (11.80) gets the form

—~1/3
) for R > Ry max

e

Ry max(R,x) = (11.83)

2
v (k) = Mk* <— 8aj2G ) , (11.84)
—2
PAG 2K 1 o\ o\
T (I 531 ) A

Employing these relations, in Figure 11.22 the Cahn plots «y (k) /k? vs k? are shown for
various fixed domain sizes, Ry (full curves), and for Ry = Rg max(R,z) (dashed curve),
where the notation k. = R, /R, is used. In Figure 11.23, the result for Ry = Rg max (R, x) is
compared with the experimental data for spinodal decomposition in the glass SiO2—12.5NasO
[5]. The Cahn plot, obtained in this way, is different in its shape as compared with the linear
classical dependence [44,45]; it is in good agreement with the experimental data shown for
comparison. Thus, the linear analysis of Eqgs. (11.73) and (11.74) allows us to determine
the growth increment for spinodal decomposition (Eq. (11.84)) depending on supersaturation,
cluster, and domain sizes in a way giving a better agreement with the experimental data as the
classical theory.

The numerical solution of Eqgs. (11.73) and (11.74) allows one not only to analyze the
initial states of spinodal decomposition but to trace the whole process of evolution of the
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Figure 11.21: Dependence of the growth increment on the cluster radius, R/ R, for various domain
sizes (full curves) and for Ry = Ro,max (R, x) (dashed curve) for z = 0.45.

cluster. In doing so, we assume kinetic limited growth (v = 2/3 in Eq. (11.75)) and again
set the temperature equal to 7" = 0.77,. Domain size and the initial cluster radius are chosen
to correspond to the maximal growth increment, i.e., Ry = Rg,, and R = R, nax (see
Egs. (11.82) and (11.83)), the initial cluster composition is given by =4 |,_, = x (1 + ).
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1
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Figure 11.22: Dependence of the ratio v/ k? on k2 for various domain sizes (full curves) and for Ry =
Ro,max(R, x) (dashed curve) for z = 0.45.

The results of calculations of the cluster evolution for a regular solution with a molar frac-
tion of the segregating component in the ambient phase equal to x = 0.45 and § = 0.01 are
presented in Figures 11.24-11.27. The shape of the Gibbs free energy surface and the trajec-
tory of cluster evolution in the (n14 /N4, N2a/Ns) Space (n, is determined by Eq. (11.53)) are
shown in Figure 11.24 for different values of the partial diffusion coefficient D; and D5 ((a)
Dy/Ds = 100, (b) D1/Dy = 1, (¢c) D1/Dy = 0.025, and (d) D1/Ds = 0.001; as earlier,
we assume D; Dy = const). The process starts in the point S and develops either increasing
(path S — F, curves (a), (b), (¢), and (d)) or decreasing (S — F’, curves (a’), (b'), (¢),
and (d")) the concentration of the second component. For = # 0.5, the minima of Gibbs free
energy, the system may approach following different paths of evolution, have different depths
(for x < 0.5 AGpr < AGp/). Preferred is the path S — F, therefore we further consider
only this version.

The dependences of compositions of cluster and ambient phase both on time and on cluster
radius are shown in Figures 11.25 and 11.26, respectively (cf. also Figure 11.10). For the case
of a quickly moving first component (D /Dy = 100, curve (a)), the evolution along the path
S — T proceeds via emission of particles of the first component from the cluster. As a result,
the cluster shrinks in size (see also Figure 11.25(a)). After a time, 7, s, the composition of the
cluster almost reaches its final value, v, ~ xof ~ 0.853 (the point 7" in Figures 11.24 and
11.26, also note that this state corresponds to the minimum of Gibbs free energy). During the
initial time interval, 7 < 7., the compositions of cluster and ambient phase approximately
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Figure 11.23: Dependence of the ratio v/ k? on k?: the solid curve shows the result of calculation for
Ro = Ro,max(R,x) for z = 0.45, circles refer to experimental data for the glass SiO2—12.5 Na2O at
530 ° C obtained by small-angle X-ray scattering [5].

change with equal rate. This rate can be determined by the analytical expressions (11.80) with
good accuracy (dashed curves in Figure 11.25). Once this stage of evolution is completed, the
cluster begins to grow with approximately constant composition while the composition of the
ambient phase continues to change. Since the condition of constancy of cluster composition
requires attachment of atoms of both kinds in a certain well-defined proportion, the rate of
evolution along the path 7" — F' is limited by the rate of attachment of atoms of the slow
second component (see Figures 11.25, 11.25(a), and 11.26). In the time 73, the composition
of the ambient phase reaches its final value, xg ~ zgy ~ 0.194.

For the case of nearly equal partial diffusion coefficients, Do = D, the evolution proceeds
similarly with the difference that the cluster size only changes insignificantly at the initial stage
of evolution, 7 < 7,5 (see Figure 11.25(b)) and the time interval 757 is considerably shorter
as compared with the previous case. Such two-stage behavior is preserved in a wide interval
of components mobility, actually only at D1 /D5 & 0.025 cluster size and concentration begin
to change monotonically down to end (see Figure 11.26, curves (c) and (c/)).

At Dy < Ds, the situation is opposite to some extent. Along the path S — T”, the cluster
grows quickly due to the incorporation of atoms of the second fast component. Then, after a
time 77, the composition of the ambient phase has almost reached its final value x5 ~ zgy,
and a slow reduction of the cluster size due to emission of atoms of the first component is
found along the path T — F.
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11.5 Phase Separation in Finite Domains 389

60

Figure 11.24: Shape of the Gibbs free energy surface and trajectory of cluster evolution in the
(n1a/Me,n2a /1) space for a regular solution with a molar fraction of the segregating component in the
ambient phase equal to = 0.45 for different values of D1/D5: (a) D1/Ds = 100, (b) D1/Ds =1,
(c) D1/D2 = 0.025, and (d) D1/D> = 0.001.

Figure 11.27 shows the dependence on the (D;/D5)-ratio of the characteristic times of
change of cluster composition, 7,¢, of ambient phase change, T3¢, and time 7,. The latter
parameter can be computed via the analytical expression, Eq. (11.80), resulting in

1 Taf — :1:]
- In . (11.86)
K v (R%max) [ o

The minimum time, min (7.f,73¢), of change of the composition of the cluster or the
ambient phase differs slightly only from 7, while the full time of decomposition is determined
by the maximum time max (7, 735), Which is twice as large as 7., for D; /Dy ~ 0.01, and
for D1 > Dy 75y larger than 7, and 7, by more than an order of magnitude.
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Figure 11.25: Dependence of the compositions of the cluster, z, and the ambient phase, x 3, on time
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Figure 11.26: Dependence of the compositions of the cluster, x, and the ambient phase, x5, on the
reduced cluster radius for different values of D1/ Ds: (a) D1/D2 = 100, (b) D1/D2 = 1,(c) D1/D2 =

0.025, and (d) D1/D> = 0.001.
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Figure 11.27: Dependence of the characteristic times 73, 7o f, and 7 on the (D1 /D2)-ratio.
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11.5.3 Transition from Independent Cluster Growth to Coarsening

So far, we have considered phase separation in finite domains of size, Ry, considering the
evolution of one cluster. However, the results of the analysis can be employed more generally
allowing one to derive important conclusions about the initial stages of phase separation pro-
cesses for systems of arbitrarily large sizes. The model considered above actually represents
the case of an infinite domain with an ensemble of identical clusters. The analysis of such
systems has already been shown to be very fruitful in previous investigations of the kinetics of
phase separation in solutions when the classical Gibbs approach was employed for the ther-
modynamic description of the clusters and cluster ensembles [229, 230, 233,234,331]. The
respective analysis are attempted to be generalized in future.

For a more detailed analysis of the kinetics of phase formation, the existence and evolu-
tion of the cluster-size distributions has to be taken into consideration. Independent growth
of clusters of nearly the same sizes is only possible at the initial stage of the process, and
such distributions are unstable. Once the depletion effects begin to dominate, the J-shaped
or Gaussian-type distribution functions are inevitably widened and the system passes into the
coarsening, or competitive growth stage (Chapter 4 and [155]). In the simplest way, this can
be done by solving the equations of motion of the clusters numerically. Such approach has
been performed in terms of the classical description of cluster formation and evolution by a
variety of authors. Here we would like to show that these analyses can be generalized by the
above-mentioned approach accounting both for variations of cluster sizes and compositions.
In order to illustrate these features, here we restrict the analysis to the evolution of cluster
ensembles consisting only of few clusters.

Completing the analysis, we demonstrate that the transition to the competitive growth
stage can be described adequately in terms of the approach employed here independently on
whether the system starts the transformation from a metastable or unstable initial state. For
this purposes, we consider the evolution of a system of three clusters in one domain. The
clusters do not interact directly but only via consuming particles from the ambient phase. The
conservation law, Eq. (11.43), then gets the form

ng = Z (ngj) + n((;)) = const, (11.87)

i

Z (n§2 + ng{i) = Z [ngz) (0) + nég (0)} = const,

7 (2

Z (ngg + nég) = Z [ngg (0) + n% (O)} = const,

7 7

(%) (4) (i)

nl) :”524'”2@7 nff) =Nyg + Nags

where the indices ¢ = 1, 2, 3 specify different clusters evolving in the system. The concentra-
tion of the second component in the ambient solution is then given by

-1
x5 =Y n$) (Z ng')) : (11.88)
i i
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and in the ith cluster by

‘ @
o= 2 (11.89)

o0l

The evolution of the system is determined by the set of equations

dnie _ _py1 - o s (). {o12). (1190

dZ%Z - _Dﬂﬂ@%&)}c’ ({n@} : {néii}) , (11.91)
where

@%AG ({n2} fri2}) = 5m2 % (n0)" (20— 25’ (11.92)

2

+ ) 0l flap,2l)) — nof(zp, ).

As before, the functions f(xg,ng)) and f(zg,x) are determined by Eq. (11.52), and n,
by Eq. (11.53). The domain size and initial cluster radii are assumed to correspond to the
maximum growth increment, i.e., Ry = 3'/3Ry,, and R = R, jnax (see Eqgs. (11.82) and
(11.83)), the initial cluster compositions are chosen as z,; = x (1 + §;), where 6, = 0.004,
0o = 1.1261, 61 = 1.26; (thus, the first cluster has the lowest deviation from the initial
composition, the second a larger and the third the highest one). The results of the computations

are shown in Figures 11.28 and 11.29. In Figure 11.28, a cross-section of the Gibbs free energy
surface and the trajectory of evolution of the first cluster is given in the <n§2 /Mo néz) / ng>

space. In Figure 11.29, the dependence of the compositions, acg,f ), the radii, R, of the clusters
(i = 1,2, 3), and the composition of ambient phase, 3, are shown in dependence on time. For
three clusters the phase space is six dimensional, therefore we only plot its two-dimensional
sections for the first cluster (which is dissolved as the first one) for different moments of time
(as specified in the figure).

At the first stage of the process, for 7 < To(f) (To(él) ~ 135, T,f) ~ 128, and T,ﬁ?’) ~ 122),
all three clusters evolve in an almost equal manner: the concentration of the second compo-
nent grows, the sizes of the clusters decrease (see Figure 11.28(b)). In the initial state, the
Gibbs free energy has a shape characteristic for the instability region (see Figures 11.28(a)
and 11.24), but already at 7 = 7, ~ 120 a saddle point evolves being a characteristic feature
of metastable states (Figure 11.28(b)). At 7 = 0(41), the concentration of the second compo-
nent in the first cluster approaches the maximum value (see Figure 11.28(c), it corresponds to
the path S — T in Figure 11.24). After that, the cluster begins to grow, and at 7 = 7. ~ 160
it reaches the maximum size. The Gibbs free energy then reaches a local minimum (see Fig-
ure 11.28(d)). In the case of a single cluster, the process would have finished at such state,
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40
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Figure 11.28: Cross-section of the Gibbs free energy surface and trajectory of evolution of the first
cluster in the (n&) /Mo, nét) / ng) -space for a regular solution with a molar fraction of the segregating

component in the ambient phase equal to x = 0.3 for D1 /D2 = 1.
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Figure 11.29: Dependence of the compositions, azgf ), radii, R™, of the clusters (¢ = 1,2,3), and
composition of ambient phase, xg, on time.

however, the second and the third clusters continue to consume atoms of the second compo-
nent, lowering their concentration in the ambient phase. As a result of such depletion effects,
the first cluster shrinks, the concentration of the second component decreases. This process
corresponds to the beginning of dissolution of the first cluster. The process is completed in a
time 7, ~ 467, when the composition of the first cluster approaches the composition of the
the ambient phase, x(al) = xg. At this moment, the radius of the cluster remains finite (see
Figure 11.28(b)). The evolution of the second cluster proceeds similarly, and in time 75 ~ 729

itis dissolved. At 73 ~ 937 the process is finished and only one cluster remains in the domain.

11.6 Results and Discussion

In the present chapter, basic features of nucleation—growth and spinodal decomposition pro-
cesses in solutions are analyzed within the framework of a thermodynamic cluster model
based on the generalized Gibbs approach. This approach allows one to determine the ther-
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modynamic potentials of clusters and ensembles of clusters in the otherwise homogeneous
ambient phase for thermodynamically well-defined (cf. [258,259]) nonequilibrium states of
the considered heterogeneous systems. Hereby the cluster, representing the density and/or
composition fluctuations may change with time both in size and intensive state parameters.
The thermodynamic analysis is further employed as the basis for the description of the kinet-
ics of the decomposition processes.

The thermodynamic analysis of cluster formation is performed in dependence on super-
saturation for metastable and unstable initial states and domains of infinite and finite sizes.
For domains of infinite sizes, in particular, the parameters of the critical clusters — size, in-
tensive state parameters, work of critical cluster formation — are determined for metastable
initial states of the solutions. It is shown that — in the framework of the generalized Gibbs
approach — the notation of a critical cluster can also be extended to unstable initial states.
Here the composition of the critical clusters is equal to the composition of the ambient phase
and the work of critical cluster formation is equal to zero. The size of the critical clusters
for unstable initial states behaves like the size of the regions with the highest amplification
of density/composition differences in the classical Cahn—Hilliard approach to the description
of spinodal decomposition. As shown, moreover, there is no qualitative difference between
nucleation and spinodal decomposition with respect to the basic mechanism of cluster evolu-
tion. Nucleation processes, starting from thermodynamically metastable initial states, proceed
qualitatively widely similar as compared with processes of phase formation governed by spin-
odal decomposition. As it turns out further, the classical model of nucleation is not correct in
application to phase formation in solutions (cf. also [3, 254]).

As an additional step, the effect of finite domain sizes on cluster formation is analyzed. Itis
shown, as a general consequence, that the degree of stability of the system to phase formation
increases with decreasing system size due to depletion effects. In particular, the parameters
of the critical clusters depend on system size. In addition, systems of finite size may be
metastable or even stable even if the infinite samples are unstable. In this case the evolution
of the system starts via spinodal decomposition. Then, due to the growth of the clusters,
the supersaturation decreases, and the system becomes metastable. Anyway, cluster growth
continues. Finally, the supersaturation decreases to such extent that the dissolution of the
clusters with smaller sizes becomes the prerequisite for the growth of the larger one, and the
stage of coarsening starts [155]. Thus, the approach allows us to describe the evolution of the
system from spinodal decomposition up to the coarsening stage; accounting both for changes
of the sizes and the intensive state parameters of the clusters in the course of this process.
An analysis of experimental results on phase separation in solutions at high supersaturations
is performed in terms of the generalized cluster model showing that the generalized cluster
model allows us a more correct interpretation of the dynamics of phase separation as compared
with this classical theory.

In the generalized Gibbs approach, similarly to the classical theory, only the knowledge
of macroscopic properties of the ambient and the newly evolving phases is required for the
analysis of phase formation processes. For this reason, the approach seems to be preferable
in the analysis of experimental results adding to the classical method a sound account of
the change of cluster properties with size (cf., e.g., [253-255,257-260]). The results of the
analysis, as performed above, were obtained by employing the model of regular solutions.
They can be quantitatively modified by a more detailed consideration of the thermodynamic
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properties of the real system, by incorporating additional thermodynamic factors like special
properties of domain boundaries or elastic stresses, which may be of importance in a number
of cases, or by accounting for peculiarities of the process of diffusion not elaborated here.
Nevertheless, we believe that the scenario outlined will be valid generally for processes of
segregation in solid or liquid solutions. The application of the methods and results obtained
to the interpretation of experimental data in phase formation in solutions deserves special
consideration. Another question to be investigated is whether the results are directly applicable
for other types of phase formation processes like, for example, condensation and boiling or
have to be eventually modified. These topics will be addressed in forthcoming analyses.
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aggregation coefficient 7, 15, 17, 37,78, 179,
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aggregation rate 79
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bubble
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size distribution 50, 52
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subcritical size 21
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cluster—matrix interactions 205
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Lifshitz-Slezov theory 360

nondeformable pores 208, 219

stochastic effects 224

weak pores 216
collision integral 121,276
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between particles 119
competitive growth 70, 392
concentration wave 357
conditions

nonisothermal 27
continuity equation 100, 238

cluster-size space 96
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density fluctuations 355
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deterministic growth 42, 46, 69, 71
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equilibrium system 46

external conditions
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free enthalpy 358
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potential energy 358
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pressure measurement 330, 339, 346, 350
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real solution 46
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recombination length 248

regular solution 37
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relaxation time 57, 301
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saddle point 370, 393

scaling law 362
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separation temperature 336
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spinodal curve 354, 372, 376
finite domain 380
spinodal decomposition 39, 353, 354, 358,
360
spinodal region
critical size 381
sticking coefficient 280
stochastic effects 224
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steady-state nucleation 57
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